|
|
Two-Stage Optimal Dispatching of Regional Power Grid Based on Electric Vehicles' Participation in Peak-Shaving Pricing Strategy |
Yang Jingsi1, Qin Wenping1, Shi Wenlong2, Cao Rui3, Yao Hongmin1 |
1. Shanxi Provincial Key Laboratory of Power System Operation and Control Taiyuan University of Technology Taiyuan 030024 China; 2. China Electric Power Research Institute Co. Ltd Beijing 100192 China; 3. Taiyuan Youteaoke Electronic Technology Co. Ltd Taiyuan 030006 China |
|
|
Abstract In response to problems such as power fluctuations, high dispatching cost and poor operation stability caused by the large-scale access of electric vehicles(EV), wind power, photovoltaics and other new energy power generation to the grid, this paper proposes a strategy,two-stage optimized dispatching plan for the regional power grid,based on the participation of EV in peak shaving. Firstly, classify according to the EV load operating characteristics, and establish four EV load models: rigid, schedulable, flexible, and smart swapping; secondly, considering the cost of EV participation in peak shaving, and giving EV peak shaving pricing strategy based on the Fuzzy Analytic Hierarchy Process (FAHP); then based on this strategy, a two-stage optimal dispatching of the regional power grid is carried out. In the first stage, the goal is to minimize the load peak-valley difference, and to make decisions on EV peak shaving pricing under this target, so as to reduce the peak shaving capacity of the power system and adjust the regional grid load distribution; in the second stage, relying on the peak shaving pricing curve obtained in the first stage, the EV load is arranged with the goal of minimizing the charging cost of EV users; finally, a simulation example is used to verify the effectiveness and rationality of EV participation in peak shaving and the economics of the pricing strategy.
|
Received: 13 August 2021
|
|
|
|
|
[1] 崔杨, 张家瑞, 仲悟之, 等. 计及电热转换的含储热光热电站与风电系统优化调度[J]. 中国电机工程学报, 2020, 40(20): 6482-6494. Cui Yang, Zhang Jiarui, Zhong Wuzhi, et al. Optimal scheduling of concentrating solar power plant with thermal energy storage and wind farm considering electric-thermal conversion[J]. Proceedings of the CSEE, 2020, 40(20): 6482-6494. [2] Fang Chen, Zhao Xiaojin, Xu Qin, et al. Aggregator-based demand response mechanism for electric vehicles participating in peak regulation in valley time of receiving-end power grid[J]. Global Energy Interconnection, 2020, 3(5): 453-463. [3] 鞠立伟, 于超, 谭忠富.计及需求响应的风电储能两阶段调度优化模型及求解算法[J]. 电网技术, 2015, 39(5): 1287-1293. Ju Liwei, Yu Chao, Tan Zhongfu.A two-stage scheduling optimization model and corresponding solving algorithm for power grid containing wind farm and energy storage system considering demand response[J]. Power System Technology, 2015, 39(5): 1287-1293. [4] 刘东奇, 王耀南, 袁小芳.电动汽车充放电与风力/火力发电系统的协同优化运行[J]. 电工技术学报, 2017, 32(3): 18-26. Liu Dongqi, Wang Yaonan, Yuan Xiaofang.Cooperative dispatch of large-scale electric vehicles with wind-thermal power generating system[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 18-26. [5] 师景佳, 袁铁江, Saeed Ahmed Khan, 等. 计及电动汽车可调度能力的风/车协同参与机组组合策略[J]. 高电压技术, 2018, 44(10): 3433-3440. Shi Jingjia, Yuan Tiejiang, Saeed Ahmed Khan, et al. Unit commitment strategy considering cooperated dispatch of electric vehicles based on scheduling capacity and wind power generation[J]. High Voltage Engineering, 2018, 44(10): 3433-3440. [6] 姚一鸣,赵溶生,李春燕,等. 面向电力系统灵活性的电动汽车控制策略[J/OL]. 电工技术学报: 1-12[2021-09-18]. https://doi.org/10.19595/j.cnki.1000-6753.tces.210515. Yao Yiming, Zhao Rongsheng, Li Chunyan, et,al.Control strategy of electric vehicles oriented to power system flexibility[J/OL]. Transactions of China Electrotechnical Society: 1-12[2021-09-18]. https://doi.org/10.19595/j.cnki.1000-6753.tces.210515. [7] 史文龙, 秦文萍, 王丽彬, 等. 计及电动汽车需求和分时电价差异的区域电网 LSTM 调度策略[J]. 中国电机工程学报, https://doi.org/10.13334/j.0258- 8013.pcsee.202473. Shi Wenlong, Qin Wenping, Wang Libin, et al. Regional power grid LSTM dispatch strategy considering the difference between electric vehicle demand and time-of-use electricity price[J]. Proceedings of the CSEE, https://doi.org/10.13334/j.0258-8013.pcsee.202473. [8] Liu Yujun, Xu Qingshan, Zang Haixiang, et al. Research on the evaluation method of capacity on electric-vehicle energy storage system[J]. Proceedings-2014 IEEE International Workshop on Intelligent Energy Systems, 2014: 88-92. [9] 刘灵恺, 雷霞, 李竹, 等. 电动汽车换电站可用电池组数动态调度策略[J]. 电工技术学报, 2017, 32(22): 242-250. Liu Lingkai, Lei Xia, Li Zhu, et al. Dynamic scheduling strategy for available battery number of electric vehicle in battery-swap station[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 242-250. [10] 崔杨, 刘柏岩, 仲悟之, 等. 考虑积压惩罚机制的含BSS微网联合系统优化调度策略[J]. 电网技术, 2020, 44(10): 3787-3793. Cui Yang, Liu Baiyan, Zhong Wuzhi, et al. Optimal scheduling strategy for joint system with micro-grid containing BSS considering overstock punishment mechanism[J]. Power System Technology, 2020, 44(10): 3787-3793. [11] 崔杨, 刘柏岩, 赵钰婷, 等. 计及车辆转移机制的含BSS微网联合系统优化调度策略[J]. 高电压技术, https://doi.org/10.13336/j.1003-6520.hve.20201633. Cui Yang, Liu Baiyan, Zhao Yuting, et al. Optimal scheduling strategy for joint system with microgrid containing BSS considering vehicle transfer mechanism[J]. High Voltage Engineering, https://doi.org/10.13336/j.1003-6520.hve.20201633. [12] 许刚, 张丙旭, 张广超.电动汽车集群并网的分布式鲁棒优化调度模型[J]. 电工技术学报, 2021, 36(3): 565-578. Xu Gang, Zhang Bingxu, Zhang Guangchao.Distributed and robust optimal scheduling model for large-scale electric vehicles connected to grid[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 565-578. [13] 张立静, 娄素华, 陈艳霞, 等. 基于电池租赁模式的电动汽车换电站电池容量优化[J]. 电网技术, 2016,40(6):1730-1735. Zhang Lijing, Lou Suhua, Chen Yanxia, et al. Battery capacity optimization of electric vehicle swapping station based on leasing mode[J]. Power System Technology, 2016, 40(6): 1730-1735. [14] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298-2305. Shi Min, Xu Li, Wang Jue, et al. Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305. [15] 崔杨, 修志坚, 刘闯, 等. 计及需求响应与火-储深度调峰定价策略的电力系统双层优化调度[J]. 中国电机工程学报, 2021, 41(13): 4403-4414. Cui Yang, Xiu Zhijian, Liu Chuang, et al. Dual level optimal dispatch of power system considering demand response and pricing strategy on deep peak regulation[J]. Proceedings of the CSEE, 2021, 41(13): 4403-4414. [16] 王轶禹, 马世俊, 皮俊波, 等. 关于国调直调电厂“两个细则”的讨论[J]. 电力系统自动化, 2018, 42(16): 174-179, 186. Wang Yiyu, Ma Shijun, Pi Junbo, et al. Key parameter design of smart grounding distribution systems[J]. Automation of Electric Power Systems, 2018, 42(16): 174-179, 186. [17] 张文韬, 王秀丽, 吴雄, 等. 大规模风电接入下含大用户直购电的电力系统调度模型研究[J]. 中国电机工程学报, 2015, 35(12): 2927-2935. Zhang Wentao, Wang Xiuli, Wu Xiong, et al. An analysis model of power system with large-scale wind power and transaction mode of direct power purchase by large consumers involved in system scheduling[J]. Proceedings of the CSEE, 2015, 35(12): 2927-2935. [18] 宋艺航, 何楠, 张会娟, 等. 电力市场下发电企业碳排放定价模型[J]. 中国电力, 2013, 46(10): 151-154. Song Yihang, He Nan, Zhang Huijuan, et al. Carbon pricing model for power generation enterprises in electricity markets[J]. Electric Power, 2013, 46(10): 151-154. [19] 苏南.电动汽车储能参与电网优化调度, 调峰成本远低于火电机组灵活性改造[N]. 中国能源报, 2021-01-13, https://finance.eastmoney.com/a/202101131773649198.html. Sunan.Electric vehicle energy storage participates in the optimal dispatch of the power grid,the cost of peak shaving is much lower than the flexible transformation of thermal power units[N]. China Energy News, 2021-01-13, https://finance.eastmoney.com/a/202101131773649198.html. [20] 罗桓桓, 王昊, 葛维春, 等. 考虑报价监管的动态调峰辅助服务市场竞价机制设计[J]. 电工技术学报, 2021, 36(9): 1935-1947, 1955. Luo Huanhuan, Wang Hao, Ge Weichun, et al. Design of dynamic peak regulation ancillary service market bidding mechanism considering quotation supervision[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1935-1947, 1955. [21] 朱云杰, 秦文萍, 于浩, 等. 基于神经网络的微电网参与上层电网实时优化调度策略[J]. 电力建设, 2020, 41(10): 9-19. Zhu Yunjie, Qin Wenping, Yu Hao, et al. Strategy based on neural network for microgrid participating in real-time optimal scheduling of upper grid[J]. Electric Power Construction, 2020, 41(10): 9-19. [22] 于浩, 秦文萍, 魏斌, 等. 考虑预测误差的交直流混合微电网经济调度策略[J]. 电网技术, 2019, 43(11): 3987-3996. Yu Hao, Qin Wenping, Wei Bin, et al. Economic dispatch of hybrid AC/DC microgrid considering prediction error[J]. Power System Technology, 2019, 43(11): 3987-3996. [23] 周椿奇, 向月, 张新, 等. V2G辅助服务调节潜力与经济性分析: 以上海地区为例[J]. 电力自动化设备, 2021, 41(8):135-141. Zhou Chunqi, Xiang Yue, Zhang Xin, et al. Potential regulation ability and economy analysis of auxiliary service by V2G: taking Shanghai area for an example[J]. Electric Power Automation Equipment, 2021, 41(8): 135-141. [24] 尹琦琳, 秦文萍, 于浩, 等. 计及风电波动性和电动汽车随机性的电力现货市场交易模型[J]. 电力系统保护与控制, 2020, 48(11): 1-12. Yin Qilin, Qin Wenping, Yu Hao, et al. Transaction model for electricity spot market considering the volatility of wind power and the randomness of electric vehicles[J]. Power System Protection and Control, 2020, 48(11): 1-12. [25] 文雯.《电动汽车与电网互动的商业前景——上海市需求响应试点案例》报告发布需求响应破解电动汽车发展难题[J]. 环境经济, 2020(12):36-38. Wen Wen.The report of “The Commercial Prospects of the Interaction of Electric Vehicles and Grids-Shanghai Demand Response Pilot Cases” is released.Demand response solves the problems of electric vehicle development[J]. Environmental Economy, 2020(12): 36-38. |
|
|
|