|
|
Multi Energy Flow Optimal Scheduling Model of Advanced Adiabatic Compressed Air Energy Storage |
Xu Weijun1, Zhang Wei2, Hu Yutao3, Yin Junjie4, Wang Jianhua4 |
1. Changzhou Jintan District Power Supply Branch State Grid Jiangsu Electric Power Co. Ltd Changzhou 213164 China; 2. Changzhou Power Supply Company of State Grid Jiangsu Electric Power Co. Ltd Changzhou 213164 China; 3. School of Software Southeast University Suzhou 215000 China; 4. School of Electrical Engineering Southeast University Nanjing 210000 China |
|
|
Abstract Advanced adiabatic compressed air energy storage(AA-CAES) is an electric energy storage system that can realize large capacity and long-time electric energy storage. In the process of energy storage, it will produce additional energy flows, which can be used as a micro integrated energy system. This paper constructs a general energy exchange analysis model based on the energy hub(EH), carries out modular matrix modeling for the internal components of AA-CAES, such as compressor, turbine and heat exchanger, and analyzes its thermodynamic characteristics and energy flow generation efficiency to study the multi energy flow supply scheduling strategy of AA-CAES. Finally, for the purpose of maximizing economical operation, an AA-CAES multi-energy flow optimization scheduling model based on energy hub matrix modeling is proposed, and the typical compressed air energy storage system equipment data is used for simulation verification. The simulation results show that AA-CAES as a micro integrated energy system has good economy, and can realize daily cogeneration, reduce the energy consumption of other heating systems, and improve the regional energy utilization efficiency.
|
Received: 09 May 2022
|
|
|
|
|
[1] 徐青山, 李淋, 盛业宏, 等. 冷热电联供型多微网主动配电系统日前优化经济调度[J]. 电网技术, 2018, 42(6): 1726-1735. Xu Qingshan, Li Lin, Sheng Yehong, et al.Day-ahead optimized economic dispatch of active distribution power system with combined cooling, heating and power-based microgrids[J]. Power System Technology, 2018, 42(6): 1726-1735. [2] 李勇, 姚天宇, 乔学博, 等. 基于联合时序场景和源网荷协同的分布式光伏与储能优化配置[J]. 电工技术学报, 2022, 37(13): 3289-3303. Li Yong, Yao Tianyu, Qiao Xuebo, et al.Optimal configuration of distributed photovoltaic and energy storage system based on joint sequential scenario and source-network-load coordination[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3289-3303. [3] 赵冬梅, 王浩翔, 陶然. 计及风电-负荷不确定性的风-火-核-碳捕集多源协调优化调度[J]. 电工技术学报, 2022, 37(3): 707-718. Zhao Dongmei, Wang Haoxiang, Tao Ran.A multi-source coordinated optimal scheduling model considering wind-load uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 707-718. [4] 梅生伟, 薛小代, 陈来军. 压缩空气储能技术及其应用探讨[J]. 南方电网技术, 2016, 10(3): 11-15, 31, 3. Mei Shengwei, Xue Xiaodai, Chen Laijun. Discussion on compressed air energy storage technology and its application[J]. Southern Power System Technology, 2016, 10(3): 11-15, 31, 3. [5] Chen Laijun, Zheng Tianwen, Mei Shengwei, et al.Review and prospect of compressed air energy storage system[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 529-541. [6] Budt M, Wolf D, Span R, et al.A review on compressed air energy storage: basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. [7] 李姚旺, 苗世洪, 尹斌鑫, 等. 考虑先进绝热压缩空气储能电站备用特性的电力系统优化调度策略[J]. 中国电机工程学报, 2018, 38(18): 5392-5404. Li Yaowang, Miao Shihong, Yin Binxin, et al.Power system optimal scheduling strategy considering reserve characteristics of advanced adiabatic compressed air energy storage plant[J]. Proceedings of the CSEE, 2018, 38(18): 5392-5404. [8] Le H T, Santoso S.Operating compressed‐air energy storage as dynamic reactive compensator for stabilising wind farms under grid fault conditions[J]. IET Renewable Power Generation, 2013, 7(6): 717-726. [9] 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 38(10): 2893-2907, 3140. Mei Shengwei, Li Rui, Chen Laijun, et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J]. Proceedings of the CSEE, 2018, 38(10): 2893-2907, 3140. [10] 金红光, 隋军, 徐聪, 等. 多能源互补的分布式冷热电联产系统理论与方法研究[J]. 中国电机工程学报, 2016, 36(12): 3150-3161. Jin Hongguang, Sui Jun, Xu Cong, et al.Research on theory and method of Muti-energy complementary distributed CCHP system[J]. Proceedings of the CSEE, 2016, 36(12): 3150-3161. [11] 马丽叶, 张涛, 卢志刚, 等. 基于变权可拓云模型的区域综合能源系统综合评价[J]. 电工技术学报, 2022, 37(11): 2789-2799. Ma Liye, Zhang Tao, Lu Zhigang, et al.Comprehensive evaluation of regional integrated energy system based on variable weight extension cloud model[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2789-2799. [12] 陈彬彬, 孙宏斌, 陈瑜玮, 等. 综合能源系统分析的统一能路理论(一): 气路[J]. 中国电机工程学报, 2020, 40(2): 436-444. Chen Binbin, Sun Hongbin, Chen Yuwei, et al.Energy circuit theory of integrated energy system analysis (I): gaseous circuit[J]. Proceedings of the CSEE, 2020, 40(2): 436-444. [13] 杨经纬, 张宁, 康重庆. 多能源网络的广义电路分析理论: (一)支路模型[J]. 电力系统自动化, 2020, 44(9): 21-32. Yang Jingwei, Zhang Ning, Kang Chongqing.Analysis theory of generalized electric circuit for multi-energy networks—part one branch model[J]. Automation of Electric Power Systems, 2020, 44(9): 21-32. [14] Favre-Perrod P.A vision of future energy networks[C]//2005 IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, Durban, South Africa, 2016: 13-17. [15] 高峰, 曾嵘, 屈鲁, 等. 能源互联网概念与特征辨识研究[J]. 中国电力, 2018, 51(8): 10-16. Gao Feng, Zeng Rong, Qu Lu, et al.Research on identification of concept and characteristics of energy Internet[J]. Electric Power, 2018, 51(8): 10-16. [16] 陈丽萍, 林晓明, 许苑, 等. 基于能源集线器的微能源网建模与多目标优化调度[J]. 电力系统保护与控制, 2019, 47(6): 9-16. Chen Liping, Lin Xiaoming, Xu Yuan, et al.Modeling and multi-objective optimal dispatch of micro energy grid based on energy hub[J]. Power System Protection and Control, 2019, 47(6): 9-16. [17] 李瑞, 陈来军, 梅生伟, 等. 先进绝热压缩空气储能变工况运行特性建模及风储协同分析[J]. 电力系统自动化, 2019, 43(11): 25-33. Li Rui, Chen Laijun, Mei Shengwei, et al.Modelling the off-design operation characteristics of advanced adiabatic compressed air energy storage and cooperative analysis of hybrid wind power and energy storage system[J]. Automation of Electric Power Systems, 2019, 43(11): 25-33. [18] 蔡杰, 张世旭, 廖爽, 等. 考虑AA-CAES装置热电联储/供特性的微型综合能源系统优化运行策略[J]. 高电压技术, 2020, 46(2): 480-490. Cai Jie, Zhang Shixu, Liao Shuang, et al.Optimal operation strategy of micro-integrated energy system considering heat and power cogeneration characteristics of AA-CAES devices[J]. High Voltage Engineering, 2020, 46(2): 480-490. [19] Shafiee S, Zareipour H, Knight A M.Considering thermodynamic characteristics of a CAES facility in self-scheduling in energy and reserve markets[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3476-3485. [20] 李姚旺, 苗世洪, 罗星, 等. 含压缩空气储能电力系统日前-日内协调调度策略[J]. 中国电机工程学报, 2018, 38(10): 2849-2860, 3136. Li Yaowang, Miao Shihong, Luo Xing, et al.Day-ahead and intra-day time scales coordinative dispatch strategy of power system with compressed air energy storage[J]. Proceedings of the CSEE, 2018, 38(10): 2849-2860, 3136. [21] Shafiee S, Zareipour H, Knight A M, et al.Risk-constrained bidding and offering strategy for a merchant compressed air energy storage plant[J]. IEEE Transactions on Power Systems, 2017, 32(2): 946-957. [22] 李姚旺, 苗世洪, 尹斌鑫, 等. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术, 2020, 41(1): 41-49. Li Yaowang, Miao Shihong, Yin Binxin, et al.Optimal dispatch model for micro integrated energy system considering multi-carrier energy generation characteristic of advanced adiabatic compressed air energy storage[J]. Power Generation Technology, 2020, 41(1): 41-49. |
|
|
|