|
|
Influence of Non-Uniform High Temperature Superconducting Tapes on Quench Characteristics of CORC Cable |
Li Xianhao1, Xu Ying1, Ren Li1, Tang Yuejin1, Peng Sisi2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Wuhan Institute of Marine Electric Propulsion Wuhan 430070 China |
|
|
Abstract The thermal load of the high temperature superconducting (HTS) CORC cable during quenching threatens the safe and stable operation of the cryogenic system and the cable body. Affected by the preparation process of micron-scale superconducting thin films, multiple HTS tapes wound in parallel with the CORC cable are not uniform. To analyze the influence of non-uniform critical current on quench characteristics of CORC cables, a finite element model based on the three-dimensional T-A formulation was built. Taking the reduced-dimensional tape surface as the solution area and the equivalent current density as the solution variable, the quench model expressed two properties of superconductivity and normal-conductivity, and constructed two constraints of current and potential in the same geometry. A reduced-dimensional thermal model was established in the conductor domain to consider the effects of loss and heat transfer; an equivalent circuit model was established globally to control the current redistribution. Further, the coupled model considered the temperature-dependent terminal resistance to simulate the burnout of tape and abrupt changes in current. The simulation results show that non-uniform HTS tapes affect the dynamic response of current redistribution and accelerate the development of local quench.
|
Received: 30 June 2022
|
|
|
|
|
[1] 肖立业, 林良真. 超导输电技术发展现状与趋势[J]. 电工技术学报, 2015, 30(7): 1-9. Xiao Liye, Lin Liangzhen.Status quo and trends of superconducting power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 1-9. [2] 张国民, 陈建辉, 邱清泉, 等. 超导直流能源管道的研究进展[J]. 电工技术学报, 2021, 36(21): 4389-4398, 4428. Zhang Guomin, Chen Jianhui, Qiu Qingquan, et al.Research progress on the superconducting DC energy pipeline[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4389-4398, 4428. [3] Goldacker W, Frank A, Heller R, et al.ROEBEL assembled coated conductors (RACC): preparation, properties and progress[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 3398-3401. [4] Takayasu M, Chiesa L, Noyes P D, et al.Investigation of HTS twisted stacked-tape cable (TSTC) conductor for high-field, high-current fusion magnets[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-5. [5] Weiss J D, Mulder T, ten Kate H J, et al. Introduction of CORC®wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications[J]. Superconductor Science and Technology, 2017, 30(1): 014002. [6] 张喜泽, 宗曦华, 黄逸佳. 上海公里级超导电缆的设计研究[J]. 低温与超导, 2022, 50(6): 35-41. Zhang Xize, Zong Xihua, Huang Yijia.Investigation on design of the kilometer superconducting cable in Shanghai[J]. Cryogenics & Superconductivity, 2022, 50(6): 35-41. [7] Jin Huan, Qin Jinggang, Liu H, et al.The performance of first CORC cable insert solenoid for development of CFETR high field magnet[J]. Nuclear Fusion, 2020, 60(9): 096028. [8] Fitzpatrick B K, Kephartl J T, Golda E M.Characterization of gaseous helium flow cryogen in a flexible cryostat for naval applications of high temperature superconductors[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1752-1755. [9] Guo Shuqiang, Ren Li, Xu Ying, et al.Study on energy storage magnet state assessment method considering temperature rise[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(2): 1-11. [10] Song Honghai, Schwartz J.Stability and quench behavior of-coated conductor at 4.2 K, self-field[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(5): 3735-3743. [11] Chan W K, Schwartz J.Three-dimensional micrometer-scale modeling of quenching in high-aspect-ratio YBa2Cu3O7-δ coated conductor tapes—part II: influence of geometric and material properties and implications for conductor engineering and magnet design[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(6): 3628-3634. [12] Ma Jun, Geng Jianzhao, Chan W K, et al.A temperature-dependent multilayer model for direct current carrying HTS coated-conductors under perpendicular AC magnetic fields[J]. Superconductor Science and Technology, 2020, 33(4): 045007. [13] 蒲东昇, 任丽, 胡子珩, 等. 超导带材并联结构的失超传播特性研究[J]. 低温与超导, 2020, 48(6): 36-42. Pu Dongsheng, Ren Li, Hu Ziheng, et al.Experimental study on the quench characteristic of YBCO tapes with different arranggements[J]. Cryogenics & Superconductivity, 2020, 48(6): 36-42. [14] Majoros M, Sumption M D, Collings E W, et al.Stability and normal zone propagation in YBCO CORC cables[J]. Superconductor Science and Technology, 2016, 29(4): 044006. [15] Zhu Zixuan, Wang Yawei, Xing Dong, et al.Quench of a single-layer ReBCO CORC cable with non-uniform terminal contact resistance[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 1-5. [16] Wang Yawei, Zheng Jinxing, Zhu Zixuan, et al.Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable[J]. Journal of Physics D: Applied Physics, 2019, 52(34): 345303. [17] 祝乘风, 厉彦忠, 谭宏博, 等. 热扰动冲击下的高温超导电缆失超恢复特性[J]. 电工技术学报, 2021, 36(18): 3884-3890. Zhu Chengfeng, Li Yanzhong, Tan Hongbo, et al.Numerical analysis on the quench and recovery of the high temperature superconducting cable subjected to thermal disturbance[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3884-3890. [18] 谭亚雄, 文明乾, 周湶, 等. 超导电力设备中YBCO超导带材不均匀性对载流特性的影响[J]. 电网技术, 2021, 45(3): 1150-1157. Tan Yaxiong, Wen Mingqian, Zhou Quan, et al.Influence of inhomogeneity of YBCO superconducting tape on current carrying characteristics in superconductive electrical equipment[J]. Power System Technology, 2021, 45(3): 1150-1157. [19] 陈炜. 高温超导线缆局部特性对交流损耗的影响研究[D]. 成都: 西南交通大学, 2021. [20] Anvar V A, Ilin K, Yagotintsev K A, et al.Bending of CORC® cables and wires: finite element parametric study and experimental validation[J]. Superconductor Science and Technology, 2018, 31(11): 115006. [21] Zhang Huiming, Zhang Min, Yuan Weijia.An efficient 3D finite element method model based on the T-A formulation for superconducting coated conductors[J]. Superconductor Science and Technology, 2017, 30(2): 024005. [22] Wang Yawei, Zhang Min, Grilli F, et al.Study of the magnetization loss of CORC® cables using a 3D T-a formulation[J]. Superconductor Science and Technology, 2019, 32(2): 025003. [23] Li Xianhao, Ren Li, Xu Ying, et al.Calculation of CORC cable loss using a coupled electromagnetic-thermal T-a formulation model[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(4): 1-7. [24] Liang Siyuan, Ren Li, Ma Tao, et al.Study on quenching characteristics and resistance equivalent estimation method of second-generation high temperature superconducting tape under different overcurrent[J]. Materials (Basel, Switzerland), 2019, 12(15): 2374. [25] 杨平, 王亚伟, 盛杰, 等. 非均匀ReBCO超导带材失超传播特性的建模与实验研究[J]. 中国电机工程学报, 2017, 37(16): 4842-4849, 4910. Yang Ping, Wang Yawei, Sheng Jie, et al.Modeling and experimental study on the quench characteristics of non-uniform REBCO coated conductors[J]. Proceedings of the CSEE, 2017, 37(16): 4842-4849, 4910. [26] 张正硕, 郑金星, 宋云涛, 等. 中国聚变工程实验堆纵场超导磁体高性能Nb3Sn CICC导体稳定性分析[J]. 电工技术学报, 2020, 35(24): 5031-5040. Zhang Zhengshuo, Zheng Jinxing, Song Yuntao, et al.Stability analysis of high-performance Nb3Sn CICC conductor in China fusion engineering testing reactor toroidal field superconducting magnets[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5031-5040. [27] Chen Lei, Li Guocheng, Chen Hongkun, et al.Combinatorial multi-objective optimization of resistive SFCL and DC circuit breaker in hybrid HVDC transmission system[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1-6. [28] 黄金朋, 张哲, 汪伟, 等. 基于分布式光纤测温技术的超导电缆局部失超检测和保护方法[J]. 电力系统保护与控制, 2020, 48(14): 76-84. Huang Jinpeng, Zhang Zhe, Wang Wei, et al.A local quench detection and protection method for a superconducting cable based on distributed optical fiber temperature measurement technology[J]. Power System Protection and Control, 2020, 48(14): 76-84. [29] 王鹤, 李兴宝, 路俊海, 等. 基于叠加原理的光纤复合低压电缆热路模型建模[J]. 电工技术学报, 2019, 34(7): 1381-1391. Wang He, Li Xingbao, Lu Junhai, et al.Modeling method of OPLC thermal circuit model based on superposition principle[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1381-1391. |
|
|
|