|
|
Design of X-Type Armature of Electromagnetic Pellet Injection System on J-TEXT Tokamak |
Chen Zhongyong1,2, Zhang Weikang1,2, Tang Junhui3, Li Feng1,2, Xia Shengguo3 |
1. International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 3. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract The International Thermonuclear Experimental Reactor (ITER) program is the largest international scientific and technological cooperation project that China has participated in, which goal is to verify the scientific and technical feasibility of using large tokamak devices to obtain fusion energy. The major plasma disruption is the biggest threat to the safe operation of ITER, resulting in the damage of the device. Therefore, the disruption mitigation is a key scientific and technical problem to be solved urgently. At present, the basic strategy for disruption mitigation is to actively inject a large number of particles, but the existing disruption mitigation systems cannot fully meet the requirements of ITER. By analyzing the characteristics of existing systems, this paper introduces a new generation of Electromagnetic Pellet Injection system (EMI) for disruption mitigation on J-TEXT tokamak. The system uses electromagnetic force to launch pellets, which can effectively improve the injection speed and reduced response time, overcoming the limitations of other systems. The armature is the core component of EMI. By introducing the structure and function of the tail contact armature, it is shown that when this type of armature is used in EMI, there are insufficient armature-rail electrical contact performance and motion stability in the deceleration stage. According to the special requirements of the armature performance in the EMI deceleration stage, a new solid armature with an X-shaped structure is designed. The simulation results show that the electromagnetic and mechanical properties of the armature meet the launch requirements, and the electrical contact characteristics are brilliant. In the launch performance test, the armature is accelerated to 520m/s and then actively decelerated to 0m/s; in the armature-pellet separation test, the stable separation of the armature and pellet is achieved, and the flight velocity of pellet is 358m/s, and this velocity can be further increased with the increase of acceleration energy. EMI provides an advanced scheme for efficient disruption mitigation on tokamak, and the X-type armature proposed in this paper has good launch performance which provides an excellent new type of armature structure and design method for EMI.
|
Received: 29 June 2022
|
|
|
|
|
[1] 石秉仁. 磁约束聚变原理与实践[M]. 北京: 原子能出版社, 1999. [2] 何开辉, 潘传红, 冯开明. 托卡马克等离子体大破裂及防治综述[J]. 中国核科技报告, 2002, 12: 117-129. He Kaihui, Pan Chuanhong, Feng Kaiming.An overview on plasma disruption mitigation and avoidance in Tokamak[J]. China Nuclear Science and Technology Report, 2002, 12: 117-129. [3] Arnoux G, Loarte A, Riccardo V, et al.Heat loads on plasma facing components during disruptions on JET[J]. Nuclear Fusion, 2009, 49(8): 5038-5046. [4] Arnoux G, Bazylev B, Lehnen M, et al.Heat load measurements on the JET first wall during disruptions[J]. Journal of Nuclear Materials, 2011, 415(1): S817-S820. [5] Matthews G F, Bazylev B, Baron-Wiechec A, et al.Melt damage to the JET ITER-like wall and divertor[J]. Physica Scripta, 2016, 167(1): 4070-4078. [6] Lehnen M, Campbell D J, Maruyama S, et al.Control, detection and mitigation of disruptions on ITER[C]//2015 IEEE 26th Symposium on Fusion Engineering, Austin, TX, USA, 2015: 1-8. [7] Hollmann E M, Aleynikov P B, Fülöp T, et al.Status of research toward the ITER disruption mitigation system[J]. Physics of Plasmas, 2014, 22(2): 1802-1819. [8] Taylor P L, Kellman A G, Evans T E, et al.Disruption mitigation studies in DIII-D[J]. Physics of Plasmas, 1999, 6(5): 1872-1879. [9] Pautasso G, Buchl K, Fuchs J C, et al.Use of impurity pellets to control energy dissipation during disruption[J]. Nuclear Fusion, 1996, 36(10): 1291-1297. [10] Yu Yaowei, Kim Y O, Kim H K, et al.First results on disruption mitigation by massive gas injection in Korea superconducting Tokamak advanced research[J]. Review of Scientific Instruments, 2012, 83(12): 3509-3515. [11] Combs S K, Baylor L R, Fisher P W, et al.ORNL mock-up tests of inside launch pellet injection on JET and LHD[J]. Fusion Engineering and Design, 2001, 58(11): 343-347. [12] Hollmann E M, Jernigan T C, Parks P B, et al.Measurements of injected impurity assimilation during massive gas injection experiments in DIII-D[J]. Nuclear Fusion, 2008, 48(11): 5007-5019. [13] Raman R, Lay W S, Jarboe T R, et al.Electromagnetic particle injector for fast time response disruption mitigation in tokamaks[J]. Nuclear Fusion, 2019, 59(1): 6021-6032. [14] 汤熠. J-TEXT上基于高速相机研究MGI产生的冷前锋传播过程[M]. 武汉: 华中科技大学, 2015. [15] Baylor L R, Barbier C C, Carmichael J R, et al.Disruption mitigation system developments and design for ITER[J]. Fusion Science and Technology, 2015, 68(2): 211-215. [16] Raman R, Jarboe T R, Menard J E, et al.Fast time response electromagnetic disruption mitigation concept[J]. Fusion Science and Technology, 2015, 68(4): 797-805. [17] Raman R, Lunsford R, Clauser C F, et al.Prototype tests of the electromagnetic particle injector-2 for fast time response disruption mitigation in tokamaks[J]. Nuclear Fusion, 2021, 61(12): 6034-6048. [18] 党晟罡. 几种典型固体电枢的形状设计与接触特性研究[D]. 秦皇岛: 燕山大学, 2016. [19] (美)理查德·埃斯特里·马歇尔. 电磁轨道炮的科学与技术[M]. 北京: 兵器工业出版社, 2006. [20] 李湘平, 鲁军勇, 冯军红, 等. 电磁发射弹丸飞行弹道仿真[J]. 国防科技大学学报, 2019, 41(4): 25-32. Li Xiangping, Lu Junyong, Feng Junhong, et al.Simulation of flight ballistic of electromagnetic launch projectile[J]. Journal of National University of Defense Technology, 2019, 41(4): 25-32. [21] 钱杏芳. 导弹飞行力学[M]. 北京: 北京工业学院出版社, 1987. [22] 佟瑞海. J-TEXT托卡马克基于大量杂质气体注入的破裂缓解实验研究[D]. 武汉: 华中科技大学, 2019. [23] 杨启仁, 徐直军. 脱壳动力学[M]. 北京: 国防工业出版社, 1996. [24] 古刚, 李宣. 一体化弹丸弹体和弹托分离特性研究[J]. 舰船科学技术, 2020, 42(15): 32-37. Gu Gang, Li Xuan.Research on separation characteristic of intergration launch projectile's body[J]. Ship Science and Technology, 2020, 42(15): 32-37. [25] Holcomb C T, Jarboe T R, Mattick A T, et al.Nonperturbing field profile measurements of a sustained spheromak[J]. Review of Scientific Instruments, 2001, 72(1): 1054-1058. [26] 唐波, 徐英桃, 栗保明. 电磁轨道炮被动式炮口消弧装置的理论分析与优化设计[J]. 弹道学报, 2016, 28(4): 62-67. Tang Bo, Xu Yingtao, Li Baoming.Theoretical analysis and optimization design of passive muzzle arc suppression device in a railgun[J]. Journal of Ballistics, 2016, 28(4): 62-67. [27] 刘旭堃, 于歆杰, 刘秀成. 电容储能型脉冲电源分时分段触发策略自动计算方法[J]. 电工技术学报, 2016, 31(11): 186-193. Liu Xukun, Yu Xinjie, Liu Xiucheng.An automatic calculation method for the triggering strategy of the capacitive pulsed-power supply[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 186-193. [28] 龚晨, 于歆杰, 刘秀成. 电容储能型轨道炮连续发射系统设计与仿真[J]. 电工技术学报, 2013, 28(S2): 111-115, 121. Gong Chen, Yu Xinjie, Liu Xiucheng.Continuous emission scheme and its simulation for capacitor-based railgun system[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 111-115, 121. [29] Chen Lixue, He Junjia, Xia Shengguo, et al.Some key parameters of monolithic C-type armature in rectangular caliber railgun[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1465-1469. [30] 阮景煇, 陈立学, 夏胜国, 等. 电磁轨道炮电流分布特性研究综述[J]. 电工技术学报, 2020, 35(21): 4423-4431. Ruan Jinghui, Chen Lixue, Xia Shengguo, et al.A review of current distribution in electromagnetic railguns[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4423-4431. [31] 王振春, 鲍志勇, 曹海要, 等. 增强型电磁轨道炮电枢轨道接触特性研究[J]. 兵工学报, 2018, 39(3): 451-456. Wang Zhenchun, Bao Zhiyong, Cao Haiyao, et al.Research on contact characteristics of armature and rail in augmented electromagnetic railgun[J]. Acta Armamentarii, 2018, 39(3): 451-456. [32] 刘福才, 李欢, 王大正, 等. 基于B探针的膛内电枢速度测量系统研究[J]. 兵工学报, 2014, 35(6): 762-768. Liu Fucai, Li Huan, Wang Dazheng, et al.Research on velocity measurement of solid armature in electromagnetic launch based on B-dot probes[J]. Acta Armamentarii, 2014, 35(6): 762-768. |
|
|
|