|
|
Frequency Spectroscopy Extraction of Oil-Immersed Paper Based on Second-Order Gradient Root Mean Square |
Xu Qingchuan1,2, Wang Shengkang1,2, Lin Fuchang1,2, Li Hua1,2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract In the field of transformer insulation diagnostics, to evaluate the insulation condition of a transformer, it is necessary to calculate the frequency domain spectroscopy of the oil-immersed paper with the structural parameters. However, as the transformer structure is often unknown in on-site measurement, the application of the frequency domain spectroscopy (FDS) method is greatly limited. This paper proposed a method to extract the frequency spectroscopy of the oil-immersed paper without the known transformer structure based on second-order gradient RMS. The frequency spectroscopy of the constructed oil-paper insulation with different moisture conditions and structures were measured and the frequency spectroscopy of the oil-immersed paper was calculated according to the structural parameters. As the research shows, the structural parameters deviated from the actual value influence the shape and size of the calculated frequency spectroscopy curve of oil-immersed paper, which significantly increase the second-order gradient RMS. The influence is less with higher moisture content. By traversing the structural parameters in the calculation of frequency spectroscopy of the oil-immersed paper, the structural parameters and frequency spectroscopy is analyzed based on the minimum second-order gradient RMS. Therefore, the frequency spectroscopy of the oil-immersed paper is extracted without the known transformer structure.
|
Received: 03 December 2021
|
|
|
|
|
[1] 张书琦, 赵晓林, 齐波, 等. 直流和极性反转电压下石蜡基与环烷基变压器油纸界面电荷积聚特性及动态过程[J]. 电工技术学报, 2022, 37(3): 767-774, 792. Zhang Shuqi, Zhao Xiaolin, Qi Bo, et al.Interface charge accumulation characteristics and dynamic process of paraffine-base and naphthene-base transformer oils under DC and polarity reversal voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 767-774, 792. [2] 崔彦捷, 汲胜昌, 祝令瑜, 等. 机械应力对油浸绝缘纸板局部放电影响[J]. 电工技术学报, 2021, 36(12): 2659-2666. Cui Yanjie, Ji Shengchang, Zhu Lingyu, et al.Effect of mechanical stress on partial discharge of oil-impregnated pressboard[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2659-2666. [3] 郭蕾, 张传辉, 廖维, 等. 基于Dissado-Hill模型的油纸绝缘受潮参数特征与评估方法[J]. 电工技术学报, 2021, 36(23): 5058-5068. Guo Lei, Zhang Chuanhui, Liao Wei, et al.Oil-paper insulation moisture parameter characteristics and evaluation method based on Dissado-Hill model[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 5058-5068. [4] 邹阳, 林超群, 叶荣, 等. 油浸纸水分含量与混联等效模型极化支路极点的定量关系[J]. 电工技术学报, 2021, 36(20): 4359-4370. Zou Yang, Lin Chaoqun, Ye Rong, et al.Quantitative relationship between the moisture content of oil-impregnated paper and the poles of the polarization branch of the hybrid equivalent model[J]. Transactions of China Electrotechnical Society, 2021, 36(20): 4359-4370. [5] 范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10): 2161-2168. Fan Xianhao, Liu Jiefeng, Zhang Yiyi, et al.Aging evaluation of transformer oil-immersed insulation combining frequency domain spectroscopy and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2161-2168. [6] Pradhan A K, Tenbohlen S.Estimation of moisture content in oil-impregnated pressboard through analyzing dielectric response current under switching impulse[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(3): 938-945. [7] Liu Jiefeng, Sun Tengyue, Fan Xianhao, et al.A modified simulation model for predicting the FDS of transformer oil-paper insulation under nonuniform aging[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9. [8] Koch M, Krueger M, Tenbohlen S.On-site methods for reliable moisture determination in power transformers[C]//IEEE PES T&D, New Orleans, LA, USA, 2010: 1-6. [9] 高竣, 廖瑞金, 王有元, 等. 油纸绝缘水分平衡样品的制备及水分评估频域特征量提取[J]. 电工技术学报, 2015, 30(18): 196-202. Gao Jun, Liao Ruijin, Wang Youyuan, et al.Preparation of oil-paper insulation samples with moisture equilibrium and frequency domain characteristic parameters extraction for moisture assessment[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 196-202. [10] 杨丽君, 高思航, 高竣, 等. 油纸绝缘频域介电谱的修正Cole-Cole模型特征参量提取及水分含量评估方法[J]. 电工技术学报, 2016, 31(10): 26-33. Yang Lijun, Gao Sihang, Gao Jun, et al.Characteristic parameters extracted from modified Cole-Cole model and moisture content assessment methods study on frequency-domain dielectric spectroscopy of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 26-33. [11] Hao Jian, Dai Xize, Yang Lijun, et al.Physical mechanism analysis of conductivity and relaxation polarization behavior of oil-paper insulation based on broadband frequency domain spectroscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1571-1578. [12] 邓映鑫, 杨丽君, 燕飞东, 等. 受潮油纸绝缘的非线性介电响应特性及H-W模型在时-频转换中的应用[J]. 电工技术学报, 2020, 35(21): 4609-4619. Deng Yingxin, Yang Lijun, Yan Feidong, et al.Nonlinear dielectric response characteristics of damp oil-impregnated pressboard insulation and application of H-W model in time-frequency conversion[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4609-4619. [13] 高竣. 基于介电指纹特征识别的变压器主绝缘老化与受潮状态评估研究[D]. 重庆: 重庆大学, 2017. [14] 刘君, 吴广宁, 周利军, 等. 变压器油纸绝缘微水扩散暂态的电介质频率响应[J]. 中国电机工程学报, 2013, 33(1): 171-178. Liu Jun, Wu Guangning, Zhou Lijun, et al.Dielectric frequency response of oil-paper composite insulation with transient moisture equilibrium[J]. Proceedings of the CSEE, 2013, 33(1): 171-178. [15] 周利军, 李先浪, 王东阳, 等. 不均匀老化油纸绝缘稳态水分分布的频域介电谱[J]. 高电压技术, 2015, 41(6): 1951-1958. Zhou Lijun, Li Xianlang, Wang Dongyang, et al.Frequency domain dielectric spectroscopy of non-uniform aging oil-paper with equilibrium moisture distribution[J]. High Voltage Engineering, 2015, 41(6): 1951-1958. [16] Xie Jiacheng, Dong Ming, Hu Yizhuo, et al.Modeling oil-paper insulation frequency domain spectroscopy based on its microscopic dielectric processes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1788-1796. [17] 董明, 刘媛, 任明, 等. 油纸绝缘频域介电谱解释方法研究[J]. 中国电机工程学报, 2015, 35(4): 1002-1008. Dong Ming, Liu Yuan, Ren Ming, et al.Explanation study of frequency-domain dielectric spectroscopy for oil-paper insulation system[J]. Proceedings of the CSEE, 2015, 35(4): 1002-1008. [18] 张大宁, 刘孝为, 詹江杨, 等. 变压器油纸绝缘频域介电谱的虚部分析[J]. 电工技术学报, 2019, 34(4): 847-854. Zhang Daning, Liu Xiaowei, Zhan Jiangyang, et al.Analysis of imaginary part of frequency domain spectroscopy for oil-paper insulation transformer[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 847-854. [19] 杨峰, 唐超, 周渠, 等. 基于等效电路的油纸绝缘系统受潮状态分析[J]. 电工技术学报, 2020, 35(21): 4586-4596. Yang Feng, Tang Chao, Zhou Qu, et al.Analyzing the moisture state of oil-paper insulation system using an equivalent circuital model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4586-4596. [20] Ekanayake C, Gubanski S M, Graczkowski A, et al.Frequency response of oil impregnated pressboard and paper samples for estimating moisture in transformer insulation[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1309-1317. [21] Yousof M F M, Ekanayake C, Saha T K. Examining the ageing of transformer insulation using FRA and FDS techniques[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 1258-1265. [22] Yang Xu, Nielsen S, Ledwich G.Frequency domain spectroscopy measurements of oil-paper insulation for energized transformers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1657-1664. [23] Pradhan A K, Chatterjee B, Chakravorti S.Estimation of dielectric dissipation factor of cellulosic parts in oil-paper insulation by frequency domain spectroscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2720-2729. [24] De Maria L, Borghetto J, Cennamo N, et al.Frequency dielectric spectroscopy and an innovative optical sensor to assess oil-paper degradation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(5): 1728-1735. [25] Koch M, Raetzke S, Krueger M.Moisture diagnostics of power transformers by a fast and reliable dielectric response method[C]//2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 2010: 1-5. [26] Koch M, Kruger M.A fast and reliable dielectric diagnostic method to determine moisture in power transformers[C]//2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 2008: 467-470. [27] Gafvert U.Dielectric response analysis of real insulation systems[C]//Proceedings of the IEEE International Conference on Solid Dielectrics, Toulouse, France, 2004: 1-10. [28] Gafvert U.Influence of geometric structure and material properties on dielectric frequency response of composite oil cellulose insulation[C]//Proceedings of 2005 International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 2005, 1: 73-76. [29] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982. [30] Bhumiwat S, Lowe S, Nething P, et al.Performance of oil and paper in transformers based on IEC 61620 and dielectric response techniques[J]. IEEE Electrical Insulation Magazine, 2010, 26(3): 16-23. |
|
|
|