|
|
Analysis of Arc Impedance Characteristics in High-Voltage Electric Pulse Discharge Rock Destruction |
Huang Shijie1, Liu Yi1,2, Lin Fuchang1,2, Zhou Peng3, Ma Ning3 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China; 3. Beijing Sanyi Zhizao Technology Co mpany Limited Beijing 102202 China |
|
|
Abstract High-voltage electric pulse discharge is a new method of rock destruction technology. The rate and magnitude of the energy injected into the arc channel are determined by the relationship between the impedance of arc channel in solid and the impedance of the outer loop, which in turn affects the destruction efficiency. A comprehensive test platform for high-voltage electric pulse discharge rock destruction was established, the voltage and current of the arc channel were measured, and the development images of the arc channel were obtained. The arc impedance characteristics were obtained by stripping the inductance component in the arc voltage. Considering the effects of temperature, channel expansion and electromagnetic radiation, the impedance model of the arc channel in the rock was established. The parameters and initial values of the model were determined by iterative calculation. The model calculation results can reasonably characterize the time-varying characteristics of arc impedance in the rock. As the arc channel expansion in the rock was more difficult, for a pulse current with an amplitude of 11.12kA and a period of 5.776μs, the typical value of the arc channel impedance was about 35.6mΩ/mm.
|
Received: 29 December 2021
|
|
|
|
|
[1] 刘志强, 宋朝阳, 程守业, 等. 千米级竖井全断面科学钻进装备与关键技术分析[J]. 煤炭学报, 2020, 45(11): 3645-3656. Liu Zhiqiang, Song Zhaoyang, Cheng Shouye, et al.Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts[J]. Journal of China Coal Society, 2020, 45(11): 3645-3656. [2] 刘毅, 李志远, 李显东, 等. 水中脉冲激波对模拟岩层破碎试验[J]. 电工技术学报, 2016, 31(24): 71-78. Liu Yi, Li Zhiyuan, Li Xiandong, et al.Experiments on the fracture of simulated stratum by underwater pulsed discharge shock waves[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 71-78. [3] 刘晓鹏, 董曼玲, 邓虎威, 等. 空气间隙击穿后放电通道内的气体运动特性[J]. 电工技术学报, 2021, 36(13): 2667-2674. Liu Xiaopeng, Dong Manling, Deng Huwei, et al.Movement characteristics of the gas in discharge channel after air gap breakdown[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2667-2674. [4] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chenguo, Yang Nan, et al.The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 35-44. [5] 官兵, 李士斌, 张立刚, 等. 激光破岩技术的研究现状及进展[J]. 中国光学, 2020, 13(2): 229-248. Guan Bing, Li Shibin, Zhang Ligang, et al.Research progress on rock removal by laser technology[J]. Chinese Optics, 2020, 13(2): 229-248. [6] Lu Gaoming, Feng Xiating, Li Yuanhui, et al.The microwave-induced fracturing of hard rock[J].Rock Mechanics and Rock Engineering, 2019, 52(9): 3017-3032. [7] 祝效华, 罗云旭, 刘伟吉, 等. 等离子体电脉冲钻井破岩机理的电击穿实验与数值模拟方法[J]. 石油学报, 2020, 41(9): 1146-1162. Zhu Xiaohua, Luo Yunxu, Liu Weiji, et al.Electrical breakdown experiment and numerical simulation method of rock-breaking mechanism of plasma electric pulse drilling[J]. Acta Petrolei Sinica, 2020, 41(9): 1146-1162. [8] 王志强, 曹云霄, 邢政伟, 等. 高压脉冲放电破碎菱镁矿石的实验研究[J]. 电工技术学报, 2019, 34(4): 863-870. Wang Zhiqiang, Cao Yunxiao, Xing Zhengwei, et al.Experimental study on fragmentation of magnesite ores by pulsed high-voltage discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 863-870. [9] 王瑞雪, 李忠文, 虎攀, 等. 低温等离子体化学毒剂洗消技术研究进展[J]. 电工技术学报, 2021, 36(13): 2767-2781. Wang Ruixue, Li Zhongwen, Hu Pan, et al.Review of research progress of plasma chemical warfare agents degradation[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2767-2781. [10] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846-866. Li Xibing, Gong Fengqiang.Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society, 2021, 46(3): 846-866. [11] Andres U, Timoshkin I, Jirestig J, et al.Liberation of valuable inclusions in ores and slags by electrical pulses[J]. Powder Technology, 2001, 114(1/2/3): 40-50. [12] Touzé S, Bru K, Ménard Y, et al.Electrical fragmentation applied to the recycling of concrete waste-Effect on aggregate liberation[J]. International Journal of Mineral Processing, 2017, 158: 68-75. [13] 章志成, 裴彦良, 刘振, 等. 高压短脉冲作用下岩石击穿特性的实验研究[J]. 高电压技术, 2012, 38(7): 1719-1725. Zhang Zhicheng, Pei Yanliang, Liu Zhen, et al.Experimental research on rock breakdown under short high-voltage pulse[J]. High Voltage Engineering, 2012, 38(7): 1719-1725. [14] 郝莎, 徐建源, 林莘. 隔离开关电弧流体数学模型研究与应用[J]. 电工技术学报, 2021, 36(13): 2710-2718. Hao Sha, Xu Jianyuan, Lin Xin.Study on the application of fluid arc model in disconnector[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2710-2718. [15] 陈宝辉, 邓捷, 孙易成, 等. 电场均匀性对细水雾短空气间隙工频放电特性的影响[J]. 电工技术学报, 2021, 36(8): 1734-1742. Chen Baohui, Deng Jie, Sun Yicheng, et al.Influence of electric field uniformity on power frequency discharge characteristics of short air gap in water mist condition[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1734-1742. [16] Rompe R, Weizel W.Über das toeplersche funkengesetz[J]. Zeitschrift Für Physik, 1944, 122(9/10/11/12): 636-639. [17] Vlastós A E.The resistance of sparks[J]. Journal of Applied Physics, 1972, 43(4): 1987-1989. [18] Braginskii S.Theory of the development of a spark channel[J]. Sovit Journal of Experimental & Theoretical Physics, 1958, 34(7): 1068-1074. [19] Martin T H, Seamen J F, Jobe D O.Energy losses in switches[C]//Ninth IEEE International Pulsed Power Conference, Albuquerque, NM, USA, 1993: 463. [20] Ushakov V Y, Vajov V F, Zinoviev N T.Electro-discharge Technology for Drilling Wells and Concrete Destruction[M]. Switzerland: Springer Nature Switzerland AG, 2019. [21] Li Changping, Duan Longchen, Tan Songcheng, et al.An electro breakdown damage model for granite and simulation of deep drilling by high-voltage electropulse boring[J]. Shock and Vibration, 2019: 7149680(1-12). [22] Roberts R M, Cook J A, Rogers R L, et al.The energy partition of underwater Sparks[J]. The Journal of the Acoustical Society of America, 1996, 99(6): 3465-3475. [23] Voitenko N V, Yudin A S, Kuznetsova N S.Evaluation of energy characteristics of high voltage equipment for electro-blasting destruction of rocks and concrete[J]. Journal of Physics: Conference Series, 2015, 652: 012011. [24] Burkin V V, Kuznetsova N S, Lopatin V V.Dynamics of electro burst in solids: I. Power characteristics of electro burst[J]. Journal of Physics D: Applied Physics, 2009, 42(18): 185204. [25] Inoue H, Lisitsyn I V, Akiyama H, et al.Drilling of hard rocks by pulsed power[J]. IEEE Electrical Insulation Magazine, 2000, 16(3): 19-25. [26] Ito M, Owada S, Nishimura T, et al.Experimental study of coal liberation: electrical disintegration versus roll-crusher comminution[J]. International Journal of Mineral Processing, 2009, 92(1/2): 7-14. [27] Li Changping, Duan Longchen, Tan Songcheng, et al.Influences on high-voltage electro pulse boring in granite[J]. Energies, 2018, 11(9): 2461. [28] Cho S H, Cheong S S, Yokota M, et al.The dynamic fracture process in rocks under high-voltage pulse fragmentation[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3841-3853. [29] Bluhm H.Pulsed power systems[M]. Berlin Heidelberg: Springer Verlag, 2006. [30] Kushner M J, Kimura W D, Byron S R.Arc resistance of laser-triggered spark gaps[J]. Journal of Applied Physics, 1985, 58(5): 1744-1751. [31] 刘毅, 赵勇, 任益佳, 等. 水中大电流脉冲放电电弧通道发展过程分析[J]. 电工技术学报, 2021, 36(16): 3525-3534. Liu Yi, Zhao Yong, Ren Yijia, et al.Analysis on the development process of arc channel for underwater high current pulsed discharge[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3525-3534. [32] Robinson J W.Finite-difference simulation of an electrical discharge in water[J]. Journal of Applied Physics, 1973, 44(1): 76-81. [33] Spitzer L Jr, Seeger R J.Physics of fully ionized gases[J]. American Journal of Physics, 1963, 31(11): 890-891. [34] Kratel A W.Pulsed power discharges in water[D]. California: California Institute of Technology, 1996. [35] Warne L, Jorgenson R, Lehr J.Resistance of a water spark.[R]. Office of Scientific and Technical Information (OSTI), 2005. [36] Timoshkin I V, Fouracre R A, Given M J, et al.Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges[J]. Journal of Physics D: Applied Physics, 2006, 39(22): 4808-4817. [37] Lisitsyn I V, Inoue H, Nishizawa I, et al.Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses[J]. Journal of Applied Physics, 1998, 84(11): 6262-6267. [38] Inoue H, Lisitsyn I V, Akiyama H, et al.Pulsed electric breakdown and destruction of granite[J]. Japanese Journal of Applied Physics, 1999, 38(11): 6502-6505. [39] 刘毅, 黄仕杰, 赵勇, 等. 液中大电流脉冲放电电弧阻抗特性分析[J]. 高电压技术, 2021, 47(7): 2591-2598. Liu Yi, Huang Shijie, Zhao Yong, et al.Analysis of arc impedance characteristics of high current pulsed discharge in liquid[J]. High Voltage Engineering, 2021, 47(7): 2591-2598. [40] Huang Shijie, Liu Yi, Ren Yijia, et al.Calculation of electrohydraulic shockwaves based on improved arc impedance model[J]. IEEE Transactions on Plasma Science, 2021, 49(9): 2901-2909. |
|
|
|