|
|
Current Distribution Characteristics of Armature-Rail Interface under Velocity Skin Effect and Contact Resistance |
Wang Zengji1,2, Chen Lixue1,2, You Penghao1,2, Lan Xinyu1,2, Ge Yifan3 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology Wuhan 430074 China; 3. Wuhan Institute of Technology Wuhan 430205 China |
|
|
Abstract In this paper, the current distribution of railgun is calculated by finite element method. In this paper, according to the different factors in the model, three models are established: the velocity skin effect model, the contact resistance model and the composite model. Firstly, by setting up the coordinate system on the armature and adding the velocity term to the Maxwell equations, the velocity skin effect caused by the armature motion is calculated. Secondly, the rough surface characteristics of armature and rail and the contact pressure between armature and rail are considered in the contact resistance model. Finally, a composite model is established by combining above models. By comparing and analyzing the current distribution characteristics of each model on the armature-rail interface, this paper shows that the composite model is the most accurate. It is shown that the velocity skin effect and contact resistance are the key factors affecting the performance of electromagnetic railgun.
|
Received: 03 November 2021
|
|
|
|
|
[1] 刘勇, 国伟, 张涛, 等. 双层电枢结构设计及其电磁力和电流密度分布[J]. 弹箭与制导学报, 2020, 40(1): 160-164. Liu Yong, Guo Wei, Zhang Tao, et al.Geometry design of double-layer armature and its electromagnetic force and current density distribution[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1): 160-164. [2] 申泽军, 左鹏, 袁建生. 电磁轨道炮电枢与轨道接触面大小对电流密度的影响分析[J]. 高电压技术, 2014, 40(4): 1084-1090. Shen Zejun, Zuo Peng, Yuan Jiansheng.Influence of contact area size between armature and rails in railguns on current density[J]. High Voltage Engineering, 2014, 40(4): 1084-1090. [3] Li Chengxian, Chen Lixue, Xia Shengguo, et al.Simulations on saddle armature with concave arc surface in small caliber railgun[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2347-2353. [4] 高翔, 张晖辉, 刘畅, 等. 考虑接触电阻的电磁发射装置温度场分析[J]. 兵器材料科学与工程, 2020, 43(3): 59-64. Gao Xiang, Zhang Huihui, Liu Chang, et al.Temperature field analysis of electromagnetic launcher under consideration of contact resistance[J]. Ordnance Materials Science and Engineering, 2020, 43(3): 59-64. [5] 王雪军, 顾金良, 罗红娥, 等. 电磁轨道炮内弹道接触电阻分析[J]. 南京理工大学学报, 2019, 43(3): 306-311. Wang Xuejun, Gu Jinliang, Luo Honge, et al.Analysis of internal ballistic contact resistance of electromagnetic railgun[J]. Journal of Nanjing University of Science and Technology, 2019, 43(3): 306-311. [6] 殷强, 张合, 李豪杰, 等. 考虑电枢与导轨实际接触状态的电磁轨道炮膛内磁场分析[J]. 兵工学报, 2019, 40(3): 464-472. Yin Qiang, Zhang He, Li Haojie, et al.Analysis of in-bore magnetic field in electromagnetic railgun considering the realistic armature-rail contact status[J]. Acta Armamentarii, 2019, 40(3): 464-472. [7] 殷强, 张合, 李豪杰. 动态条件下电磁轨道炮膛内磁场和电场分析[J]. 兵工学报, 2017, 38(6): 1059-1066. Yin Qiang, Zhang He, Li Haojie.Analysis of in-bore magnetic and electric fields in electromagnetic railgun under dynamic condition[J]. Acta Armamentarii, 2017, 38(6): 1059-1066. [8] Jin Longwen, Li Jun, Lei Bin.Approximate field scaling of railgun launcher under the condition of matching projectile dynamic parameters[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 3286-3292. [9] Jin Longwen, Lei Bin, Zhang Qian, et al.Electromechanical performance of rails with different cross-sectional shapes in railgun[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1220-1224. [10] Dwight L, Sikhanda S.Eddy current effects in the laminated containment structure of railguns[J]. IEEE Transactions on Magnetics, 2007, 43(1): 150-156. [11] 李湘平, 鲁军勇, 谭赛, 等. 基于Fluent二次开发的电磁轨道发射运动磁场仿真[J]. 中国电机工程学报, 2020, 40(19): 6364-6371. Li Xiangping, Lu Junyong, Tan Sai, et al.Simulation on moving magnetic field of electromagnetic rail launch based on fluent secondary development[J]. Proceedings of the CSEE, 2020, 40(19): 6364-6371. [12] 李白, 鲁军勇, 谭赛, 等. 有限体积法在滑动电接触问题中的应用[J]. 海军工程大学学报, 2019, 31(6): 23-28. Li Bai, Lu Junyong, Tan Sai, et al.Application of finite volume method in analyzing sliding electrical contact problem[J]. Journal of Naval University of Engineering, 2019, 31(6): 23-28. [13] 林庆华, 栗保明. 基于瞬态多物理场求解器的电磁轨道炮发射过程建模与仿真[J]. 兵工学报, 2020, 41(9): 1697-1707. Lin Qinghua, Li Baoming.Modeling and simulation of electromagnetic railgun launching process based on a transient multi-physical field solver[J]. Acta Armamentarii, 2020, 41(9): 1697-1707. [14] 汤铃铃, 李豪杰. 电磁轨道炮膛内磁场环境仿真分析[J]. 计算机仿真, 2014, 31(11): 1-5, 46. Tang Lingling, Li Haojie.Simulation analysis of railgun in-bore high magnetic field[J]. Computer Simulation, 2014, 31(11): 1-5, 46. [15] 任先进, 张春. 静止条件下电磁轨道炮膛内磁场环境仿真分析[J]. 火控雷达技术, 2018, 47(2): 82-84, 90. Ren Xianjin, Zhang Chun.Simulation analysis of in-bore magnetic field environment of electromagnetic rail-gun at static condition[J]. Fire Control Radar Technology, 2018, 47(2): 82-84, 90. [16] 吕庆敖, 王维刚, 邢彦昌, 等. 电磁轨道炮铁磁材料对铜带内电流分布的影响[J]. 强激光与粒子束, 2015, 27(10): 268-271. Lü Qingao, Wang Weigang, Xing Yanchang, et al.Effect of ferromagnetism material on current distribution in copper strips for electromagnetic railguns[J]. High Power Laser and Particle Beams, 2015, 27(10): 268-271. [17] 邢彦昌, 吕庆敖, 陈建伟, 等. 轨道炮不同激励电流下的发射特性对比分析[J]. 火力与指挥控制, 2019, 44(11): 58-60, 66. Xing Yanchang, Lü Qingao, Chen Jianwei, et al.Comparative analysis of launching characteristic for railgun with different excitation current[J]. Fire Control & Command Control, 2019, 44(11): 58-60, 66. [18] Zuo Peng, Geng Yiqing, Li Jun, et al.An approach for eddy-current calculation in railguns based on the finite-element method[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1592-1596. [19] Mohammad S, Asghar K.Study of the current distribution, magnetic field, and inductance gradient of rectangular and circular railguns[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1376-1381. [20] 李鹤, 李治源, 雷彬, 等. 电磁轨道炮不同截面轨道的特性分析[J]. 火力与指挥控制, 2014, 39(4): 45-48, 53. Li He, Li Zhiyuan, Lei Bin, et al.Analysis on rail performance of EM railgun with different cross sections[J]. Fire Control & Command Control, 2014, 39(4): 45-48, 53 [21] 杜佩佩, 鲁军勇, 冯军红, 等. 电磁轨道发射器电磁结构耦合动态发射过程数值模拟[J]. 电工技术学报, 2020, 35(18): 3802-3810. Du Peipei, Lu Junyong, Feng Junhong, et al.Numerical simulation of dynamic launching process of electromagnetic rail launcher with electromagnetic and structural coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3802-3810. [22] 古刚, 吴立周, 耿昊, 等. 基于电磁-流场耦合的轨道冷却仿真分析[J]. 电工技术学报, 2020, 35(17): 3601-3608. Gu Gang, Wu Lizhou, Geng Hao, et al.Simulation and analysis of rail cooling based on electromagnetic and fluid field coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3601-3608. [23] 张威, 李海元, 栗保明. 基于有限元仿真的不同截面轨道炮特性分析[J]. 计算机仿真, 2021, 38(8): 18-22, 171. Zhang Wei, Li Haiyuan, Li Baoming.Characteristics analysis of railgun with different cross section based on finite element simulation[J]. Computer Simulation, 2021, 38(8): 18-22, 171. [24] Yovanovich M.Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J]. IEEE Transactions on Components and Packaging Technologies, 2005, 28(2): 182-206. |
|
|
|