|
|
A Research Review on Application of Motor Drive System Self-Sensing in Mechanical Fault Diagnosis |
Yao Yuan1, Li Yesong2, Lei Li2,3, Xie Bin2, Wang Yaohui2 |
1. College of Electrical Engineering Henan University of Technology Zhengzhou 450001 China; 2. School of Artificial Intelligent and Automation Huazhong University of Science and Technology Wuhan 430074 China; 3. Wuhan Huazhong Numerical Control Co. Ltd Wuhan 430223 China |
|
|
Abstract The development of condition monitoring and fault diagnosis for CNC machines, industrial robots and other key manufacturing equipment can improve their security and reliability. It also meets the requirement of intelligent manufacturing. Compared with the traditional vibration analysis method, the motor drive system, i.e. the actuator in the mechatronic system, can be served as a perceptron which provides a mechanical fault diagnosis approach without additional sensors. This paper focuses on the application of the motor drive in condition perception of mechanical equipment. The researches at home and abroad on mechanical fault diagnosis based on measuring, controlling and observing information are summarized. Meanwhile, according to the characteristics of the motor drive system and the requirements of engineering practice, some key issues and possible solutions for diagnosis with the self-sensing motor drive are proposed.
|
Received: 21 April 2021
|
|
|
|
|
[1] International energy agency, world energy outlook 2019[EB/OL]. outlook 2019[EB/OL]. [2019-11]. https://www.iea.org/reports/world-energy-outlook-2019. [2] Lorenz R D.Key technologies for future motor drives[C]//2005 International Conference on Elec-trical Machines and Systems (ICEMS), Nanjing, 2005: 1-6. [3] Gagas B S, Sasaki K, Fukushige T, et al.Analysis of magnetizing trajectories for variable flux PM synchronous machines considering voltage, high-speed capability, torque ripple, and time duration[J]. IEEE Transactions on Industry Applications, 2016, 52(5): 4029-4038. [4] Yao Yuan, Li Yesong, Yin Quan.A novel method based on self-sensing motor drive system for misalignment detection[J]. Mechanical Systems and Signal Processing, 2019, 116: 217-229. [5] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. Lei Yaguo, Jia Feng, Kong Detong, et al.Oppor-tunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104. [6] Concari C, Ftanceschini G, Tassoni C, et al.Torque and field currents peculiarities under different indu-ction machine troubles[C]//IEEE International Sympo-sium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Cracow, 2007: 349-355. [7] Riley C M, Lin B K, Habetler T G, et al.Stator current harmonics and their causal vibrations: a preliminary investigation of sensorless vibration monitoring applications[J]. IEEE Transactions on Industry Applications, 1999, 35(1): 94-99. [8] Gritli Y, Bellini A, Rossi C, et al.Condition monitoring of mechanical faults in induction machines from electrical signatures: review of different techniques[C]//The 2017 IEEE 11th Inter-national Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, 2017: 77-84. [9] 张璋, 杨江天, 薛灿灿, 等. 基于电机定子电流分析的机车齿轮箱故障诊断[J]. 铁道学报, 2020, 42(5): 51-57. Zhang Zhang, Yang Jiangtian, Xue Cancan, et al.Locomotive gearbox fault detection based on drive motor stator current analysis[J]. Journal of the China Railway Society, 2020, 42(5): 51-57. [10] Masmoudi M L, Etien E, Moreau S, et al.Ampli-fication of single mechanical fault signatures using full adaptive PMSM observer[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 615-623. [11] Chen Xiaowang, Feng Zhipeng.Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions[J]. Mechanical Systems and Signal Processing, 2019, 121: 636-654. [12] Kia S H, Henao H, Capolino G.Fault index statistical study for gear fault detection using stator current space vector analysis[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 4781-4788. [13] Gritli Y, Rossi C, Casadei D, et al.A diagnostic space vector-based index for rotor electrical fault detection in wound-rotor induction machines under speed transient[J]. IEEE Transactions on Industrial Elec-tronics, 2017, 64(5): 3892-3902. [14] Frini M, Soualhi A, El Badaoui M.Gear faults diagnosis based on the geometric indicators of electrical signals in three-phase induction motors[J]. Mechanism and Machine Theory, 2019, 138: 1-15. [15] Hameed A, Gul S T, Khan A Q.A Park's vector approach using process monitoring statistics of principal component analysis for machine fault detection[C]//The 2016 International Conference on Emerging Technologies (ICET), Islamabad, 2016: 1-5. [16] Granjon P, Phua G S L. Estimation of geometric properties of three-component signals for system monitoring[J]. Mechanical Systems and Signal Pro-cessing, 2017, 97: 95-111. [17] Marzebali M H, Faiz J, Capolino G, et al.Planetary gear fault detection based on mechanical torque and stator current signatures of a wound rotor induction generator[J]. IEEE Transactions on Energy Con-version, 2018, 33(3): 1072-1085. [18] Verucchi C, Bossio J, Bossio G, et al.Misalignment detection in induction motors with flexible coupling by means of estimated torque analysis and MCSA[J]. Mechanical Systems and Signal Processing, 2016, 80: 570-581. [19] Kim J, Shin S, Lee S B, et al.Power spectrum-based detection of induction motor rotor faults for immunity to false alarms[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1123-1132. [20] Faiz J, Moosavi S M M. Detection of mixed eccentricity fault in doubly-fed induction generator based on reactive power spectrum[J]. IET Electric Power Applications, 2017, 11(6): 1076-1084. [21] Cruz S M A. An active-reactive power method for the diagnosis of rotor faults in three-phase induction motors operating under time-varying load con-ditions[J]. IEEE Transactions on Energy Conversion, 2012, 27(1): 71-84. [22] Irfan M, Saad N, Ibrahim R, et al.A non-invasive method for condition monitoring of induction motors operating under arbitrary loading conditions[J]. Arabian Journal for Science and Engineering, 2016, 41(9): 3463-3471. [23] Shao Hua, Wang Haili, Zhao Xiaming.A cutting power model for tool wear monitoring in milling[J]. International Journal of Machine Tools and Manu-facture, 2004, 44(14): 1503-1509. [24] Zhao Ming, Lin Jing.Health assessment of rotating machinery using a rotary encoder[J]. IEEE Transa-ctions on Industrial Electronics, 2018, 65(3): 2548-2556. [25] Wolf C M, Lorenz R D.Using the motor drive as a sensor to extract spatially dependent information for motion control applications[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1344-1351. [26] Wolf C M, Hanson K M, Lorenz R D, et al.Using the traction drive as the sensor to evaluate and track deterioration in electrified vehicle gearboxes[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2610-2618. [27] Wang Kang, Baloch N A, Lorenz R D.Improvement of back-EMF self-sensing for induction machines when using deadbeat-direct torque and flux control (DB-DTFC)[J]. IEEE Transactions on Industry Appli-cations, 2017, 53(5): 4569-4578. [28] Huh K K, Lorenz R D, Nagel N J.Gear fault diagnostics integrated in the motion servo drive for electromechanical actuators[J]. IEEE Transactions on Industry Applications, 2012, 48(1): 142-150. [29] 杨明, 柴娜, 李广, 等. 基于位域运动误差观测器的齿轮断齿故障诊断[J]. 电工技术学报, 2018, 33(6): 1285-1292. Yang Ming, Chai Na, Li Guang, et al.Diagnosis of the gear tooth-broken fault based on the kinematic error observer in spatial domain[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1285-1292. [30] 杨幂, 黄旭, 任博阳, 等. 基于转速信号的电机首次安装角度不对中故障检测[J]. 电工技术学报, 2021, 36(15): 3191-3199. Yang Mi, Huang Xu, Ren Boyang, et al.Angle misalignment fault detection method of motor’s first installation based on speed signal[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3191-3199. [31] 朱钰, 章文丰, 潘国培, 等. 用于原点阻抗测量的改进锤击法[J]. 船舶工程, 2018, 40(增刊1): 179-181. Zhu Yu, Zhang Wenfeng, Pan Guopei, et al.Improved impact method for driving point impedance mea-surement[J]. Ship Engineering, 2018, 40(S1): 179-181. [32] Mohammed O D, Rantantatalo M. Dynamic response and time-frequency analysis for gear tooth crack detection[J]. Mechanical Systems and Signal Pro-cessing, 2016, 66-67: 612-624. [33] Saxena A, Chouksey M, Parey A.Effect of mesh stiffness of healthy and cracked gear tooth on modal and frequency response characteristics of geared rotor system[J]. Mechanism and Machine Theory, 2017, 107: 261-273. [34] Blánquez F R, Platero C A, Rebollo E, et al.Field-winding fault detection in synchronous machines with static excitation through frequency response analysis[J]. International Journal of Electrical Power & Energy Systems, 2015, 73: 229-239. [35] 何潇, 郭亚琦, 张召, 等动态系统的主动故障诊断技术[J]. 自动化学报, 2020, 46(8): 1557-1570. He Xiao, Guo Yaqi, Zhang Zhao, et al.Active fault diagnosis for dynamic systems[J]. Acta Automatica Sinica, 2020, 46(8): 1557-1570. [36] Zoubek H, Villwock S, Pacas M.Frequency response analysis for rolling-bearing damage diagnosis[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4270-4276. [37] Luo Bo, Wang Haoting, Liu Hongqi, et al.Early fault detection of machine tools based on deep learning and dynamic identification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 509-518. [38] 周东华, 刘洋, 何潇. 闭环系统故障诊断技术综述[J]. 自动化学报, 2013, 39(11): 1933-1943. Zhou Donghua, Liu Yang, He Xiao.Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11): 1933-1943. [39] 杨耕, 刘俊岭. 未来电机驱动系统的关键技术[J]. 电力电子, 2006(2): 27-32. Yang Geng, Liu Junling.Key technologies for future motor drives[J]. System Control & Simulation, 2006(2): 27-32. [40] Cheng L L, Kwok K E, Huang Biao.Closed-loop fault detection using the local approach[J]. Canadian Journal of Chemical Engineering, 2003, 81(5): 1101-1108. [41] Cruz S M A, Stefani A, Filippetti F, et al. A new model-based technique for the diagnosis of rotor faults in RFOC induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4218-4228. [42] Hou Zhaowen, Huang Jin, Liu He, et al.Quantitative broken rotor bar fault detection for closed-loop controlled induction motors[J]. IET Electric Power Applications, 2016, 10(5): 403-410. [43] Concari C, Franceschini G, Tassoni C.Rotor fault detection in closed loop induction motors drives by electric signal analysis[C]//The 2008 18th Inter-national Conference on Electrical Machines, Vilamoura, 2008: 1-6. [44] Yao Yuan, Li Yesong, Yin Quan.Bandpass effect and its compensation method for diagnosis in a closed-loop control system[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1679-1689. [45] Yao Yuan, Xie Bin, Lei Li, et al.Signal enhancement method for mechanical fault diagnosis in flexible drive-train[J]. IEEE Transactions on Industrial Elec-tronics, 2021, 68(3): 2554-2563. [46] 张健磊, 高湛军, 陈明, 等. 考虑复故障的有源配电网故障定位方法[J]. 电工技术学报, 2021, 36(11): 2265-2276. Zhang Jianlei, Gao Zhanjun, Chen Ming, et al.Fault location method for active distribution networks considering combination faults[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2265-2276. [47] Bellini D, Concari C, Franceschini G, et al.Vibrations, currents and stray flux signals to asses induction motors rotor conditions[C]//The IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, 2006: 4963-4968. [48] Filippetti F, Franceschini G, Tassoni C, et al.AI techniques in induction machines diagnosis including the speed ripple effect[J]. IEEE Transactions on Industry Applications, 1998, 34(1): 98-108. [49] Najafabadi T A, Salmasi F R, Jabehdar-Maralani P.Detection and isolation of speed-, DC-link voltage-, and current-sensor faults based on an adaptive observer in induction-motor drives[J]. IEEE Transa-ctions on Industrial Electronics, 2011, 58(5): 1662-1672. [50] Jlassi I, Cardoso A J M. A single method for multiple IGBT, current, and speed sensor faults diagnosis in regenerative PMSM drives[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3): 2583-2599. [51] 彭聪, 刘彬, 周乾. 基于机器视觉和盲源分离的机械故障检测[J]. 上海交通大学学报, 2020, 54(9): 953-960. Peng Cong, Liu Bin, Zhou Qian.Mechanical fault detection based on machine vision and blind source separation[J]. Journal of Shanghai Jiao Tong Univer-sity, 2020, 54(9): 953-960. [52] 盛博, 邓超, 熊尧, 等. 基于图论的数控机床故障诊断方法[J]. 计算机集成制造系统, 2015, 21(6): 1559-1570. Sheng Bo, Deng Chao, Xiong Yao, et al.Fault diagnosis for CNC machine tool based on graph theory[J]. Computer Integrated Manufacturing System, 2015, 21(6): 1559-1570. [53] 沈涛, 李舜酩, 辛玉. 基于深度学习的旋转机械故障诊断研究综述. 计算机测量与控制, 2020, 28(9): 1-8. Shen Tao, Li Shunming, Xin Yu.Review on fault diagnosis of rotation machinery based on deep learning[J]. Computer Measurement & Control, 2020, 28(9): 1-8. [54] Cao Pei, Zhang Shengli, Tang Jiong.Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning[J]. IEEE Access, 2018, 6: 26241-26253. [55] Udmale S S, Singh S K, Singh R, et al.Multi-fault bearing classification using sensors and ConvNet-based transfer learning approach[J]. IEEE Sensors Journal, 2020, 20(3): 1433-1444. [56] Goodfellow I J, Pouget-Abadie J, Mirza M, et al.Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680. [57] Zhou Funa, Yang Shuai, Fujita H, et al.Deep learning fault diagnosis method based on global optimization GAN for unbalanced data[J]. Knowledge-Based Systems, 2020, 187: 104837. [58] 陈剑, 杜文娟, 王海风, 等. 采用深度迁移学习定位含直驱风机次同步振荡源机组的方法[J]. 电工技术学报, 2021, 36(1): 179-190. Chen Jian, Du Wenjuan, Wang Haifeng, et al.A method of locating the power system subsynchronous oscillation source unit with grid-connected PMSG using deep transfer learning[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 179-190. [59] 杨志淳, 沈煜, 杨帆, 等. 考虑多元因素态势演变的配电变压器迁移学习故障诊断模型[J]. 电工技术学报, 2019, 34(7): 1505-1515. Yang Zhichun, Shen Yu, Yang Fan, et al.A transfer learning fault diagnosis of distribution transformer considering multi-factor situation evolution[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(7): 1505-1515. [60] Lei Yaguo, Yang Bin, Jiang Xinwei, et al.Appli-cations of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 1-39. [61] Mao Wentao, Liu Yamin, Ding Ling, et al.Imba-lanced fault diagnosis of rolling bearing based on generative adversarial network: a comparative study[J]. IEEE Access, 2019, 7: 9515-9530. [62] Yang Bin, Lei Yaguo, Jia Feng, et al.A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9747-9757. [63] Yang Bin, Lei Yaguo, Jia Feng, et al.An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 692-706. [64] Riley C M, Lin B K, Habetler T G, et al.A method for sensorless on-line vibration monitoring of induction machines[J]. IEEE Transactions on Industry Appli-cations, 1998, 34(6): 1240-1245. [65] Immovilli F, Bellini A, Rubini R, et al.Diagnosis of bearing faults in induction machines by vibration or current signals: a critical comparison[J]. IEEE Transactions on Industry Applications, 2010, 46(4): 1350-1359. [66] Jung J, Lee S B, Lim C, et al.Electrical monitoring of mechanical looseness for induction motors with sleeve bearings[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1377-1386. [67] Wang Jun, Peng Yayu, Qiao Wei.Current-aided order tracking of vibration signals for bearing fault diagnosis of direct-drive wind turbines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6336-6346. [68] Jaramillo V H, Ottewill J R, Dudek R, et al.Condition monitoring of distributed systems using two-stage Bayesian inference data fusion[J]. Mechanical Systems and Signal Processing, 2017, 87: 91-110. [69] Jing Luyang, Zhao Ming, Li Pin, et al.A con-volutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1-10. [70] Yao Yuan, Li Yesong, Zhang Pengfei, et al.Data fusion methods for convolutional neural network based on self-sensing motor drive system[C]//The IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington DC, 2018: 5371-5376. [71] Zhao Minghang, Kang M, Tang Baoping, et al.Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4696-4706. [72] 康宜华, 杨叔子, 卢文祥, 等. 空间域信号的采样方法[J]. 华中理工大学学报, 1992, 20(增刊1): 183-188. Kang Yihua, Yang Shuzi, Lu Wenxiang, et al.Sampling method for spatial signals[J]. Journal of Huazhong University of Science and Technology, 1992, 20(S1): 183-188. [73] 李叶松, 姚远, 谢斌, 等. 一种基于空间域信息的直线运动系统健康监测方法: 中国, 110927485[P].2020-12-08. [74] 周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述[J]. 自动化学报, 2014, 40(2): 161-171. Zhou Donghua, Shi Jiantao, He Xiao.Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2): 161-171. [75] Sun Bowen, Wang Jiongqi, He Zhangming, et al.Fault detection for closed-loop control systems based on parity space transformation[J]. IEEE Access, 2019, 7: 75153-75165. [76] Xu Zhen, Deng Hua, Zhang Yi.Piecewise nonlinear dynamic modeling for gear transmissions with rotary inertia and backlash[J]. IEEE Access, 2019, 7: 176495-176503. [77] Mazzoletti M A, Bossio G R, De Angelo C H, et al. A model-based strategy for interturn short-circuit fault diagnosis in PMSM[J]. IEEE Transactions on Indu-strial Electronics, 2017, 64(9): 7218-7228. [78] 时培明, 赵娜, 梁凯, 等. 变载荷激励下齿轮传动系统齿根裂纹故障动力学特性分析[J]. 机械强度, 2017, 39(5): 1001-1006. Shi Peiming, Zhao Na, Liang Kai, et al.Analysis on dynamic characteristics of tooth root crack of gear drive system under variable load excitation[J]. Journal of Mechanical Strength, 2017, 39(5): 1001-1006. [79] 邵毅敏, 涂文兵. 深沟球轴承三维非线性时变振动特性研究[J]. 振动工程学报, 2013, 26(6): 831-838. Shao Yimin, Tu Wenbing.3D nonlinear time-varing vibration characteristics of deep-groove ball bearing[J]. Journal of Vibration Engineering, 2013, 26(6): 831-838. [80] 张坤鹏, 姜斌, 陈复扬. 牵引电机结构损伤降阶模型和复合故障分离[J]. 控制工程, 2020, 27(2): 212-218. Zhang Kunpeng, Jiang Bin, Chen Fuyang.Structural damage reduced-order model and coupled fault isolation for traction motor[J]. Control Engineering of China, 2020, 27(2): 212-218. [81] 王芹芹, 刘瑞芳, 任雪娇, 等. 基于多物理场分析的电机轴承放电击穿[J]. 电工技术学报, 2020, 35(20): 4251-4257. Wang Qinqin, Liu Ruifang, Ren Xuejiao, et al.The motor bearing discharge breakdown based on the multi-physics field analysis[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4251-4257. [82] Liu Yang, Yan Xunshi, Zhang Chen’an, et al.An ensemble convolutional neural networks for bearing fault diagnosis using multi-sensor data[J]. Sensors, 2019, 19(23): 1-20. [83] Beckhoff Automation (Shanghai) Co. Ltd.Twin Catmachine learning: scalable, open and in real time[EB/OL].[2021-06-23]. https://www.beckhoff.com.cn/zh-cn/products/automation/twincat-3-machine-learning/. [84] 武汉华中数控股份有限公司. 华中数控: 引领智能机床变革, 助力中国机床“开道超车”[EB/OL]. [2021-04-23]. http://www.huazhongcnc.com/portal/article/index/id/1442/cid/15.html. [85] Wang Xiaoxian, Lu Siliang, Huang Wenbin, et al.Efficient data reduction at the edge of industrial internet of things for PMSM bearing fault dia-gnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12. [86] Siemens Aktiengesellschaf.The power of digitalization in manufacturing[EB/OL].[2021-02-17].https://new. siemens.com/global/en/markets/machinebuilding/machine-tools/cnc4you/fokus-digitalisierung/sinumerik-edge.html. [87] Beckhoff Automation (Shanghai) Co. Ltd.New features twinCAT 3.1[EB/OL]. [2021-06-23]. https://www.beckhoff.com.cn/zh-cn/products/automation/twincat/twincat-3-build-4024/. [88] Mitsubishi Electric Corporation. Announcing the founding of the edgecross consortium[EB/OL]. [2021-07-10]. http://www.mitsubishielectric.com/news/2017/1106-b.pdf. |
|
|
|