|
|
Sub-Synchronous Oscillation Suppression Strategy of Weak AC Wind Power System with Static Var Compensator Based on Linear Active Disturbance Rejection Control |
Yan Xiangwu, Chang Wenfei, Cui Sen, Sun Ying, Jia Jiaoxin |
Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China |
|
|
Abstract On August 9, 2019, A large-scale blackout in the United Kingdom caused blackouts in several important cities, losing about 3.2 percent of the load and affecting about 1 million power users. On the basis of the accident investigation report provided by the UK National Grid, the development process of large-scale off-grid of Hornsea wind farm in the accident was analyzed in detail, and the specific reasons for the sub-synchronous oscillation of Hornsea wind farm were analyzed. The Hornsea wind power system model was established by Matlab simulation software to reproduce the accident. To solve the problem of sub-synchronous oscillation of Hornsea wind farm, using the advantages of linear active disturbance rejection control with strong anti-disturbance ability and strong adaptability to different working conditions, a linear active disturbance rejection controller was proposed to replace the voltage PI control module of the static var compensator (SVC), which would estimate and compensate the total disturbance in the Hornsea wind power system, overcome the contradiction between the system response speed and overshoot, improve the stability and robustness of system, and effectively suppress the sub-synchronous oscillation of Hornsea wind power system. The simulation results verify the effectiveness of the proposed control strategy in suppressing the sub-synchronous oscillation of weak AC wind power system after being applied to static var compensator, which serves as a reference for studying similar problems of offshore wind power in China.
|
Received: 19 April 2021
|
|
|
|
|
[1] National Grid ESO. Technical report on the events of 9 August2019[EB/OL]. [2019-09-06]. https://www.nationalgrideso.com/document/152346/download. [2] National Grid ESO. Appendices to the technical report on the events of 9 August2019[EB/OL]. [2019-09-06]. https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_appendices_-_final.pdf [3] National Grid ESO. Interim Report into the Low Frequency Demand Disconnection (LFDD) following Generator Trips and Frequency Excursion on 9 Aug2019[EB/OL]. [2019-08-16]. https://www.ofgem.gov.uk/system/files/docs/2020/07/national_grid_eso_report_lfdd_9_august_2019.pdf [4] 方勇杰. 英国“8·9”停电事故对频率稳定控制技术的启示[J]. 电力系统自动化, 2019, 43(24): 1-5. Fang Yongjie.Reflections on frequency stability control technology based on the blackout event of 9 august 2019 in UK[J]. Automation of Electric Power Systems, 2019, 43(24): 1-5. [5] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 6183-6192. Sun Huadong, Xu Tao, Guo Qiang, et al.Analysis on blackout in great britain power grid on august 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183-6192. [6] 典焱. 英国大停电事故分析:新能源大量替代传统火电将导致系统惯量水平下降[J]. 电力设备管理, 2019(9): 98. Dian Yan.Analysis of the UK's blackouts: a large replacement of traditional thermal power by new energy sources will lead to a decline in system inertia levels[J]. Electric Power Equipment Management, 2019(9): 98. [7] 滕苏郸, 宫一玉, 张璞, 等. 2019年8月9日英国大停电事故分析及对北京电网安全稳定运行的启示[J]. 电力勘测设计, 2020(2): 5-8. Teng Sudan, Gong Yiyu, Zhang Pu, et al. Analysis of great blackout accident in Britain on august 9, 2019 and enlightenment to Beijing power network[J]. Electric Power Survey & Design, 2020(2): 5-8. [8] 樊陈, 姚建国, 张琦兵, 等. 英国“8·9”大停电事故振荡事件分析及思考[J]. 电力工程技术, 2020, 39(4): 34-41. Fan Chen, Yao Jianguo, Zhang Qibing, et al.Reflection and analysis for oscillation of the blackout event of 9 august 2019 in UK[J]. Electric Power Engineering Technology, 2020, 39(4): 34-41. [9] 胡韵婷. 双馈风电场并网系统的次同步振荡分析及抑制[D]. 北京: 华北电力大学, 2019. [10] 王亮, 谢小荣, 姜齐荣, 等. 大规模双馈风电场次同步谐振的分析与抑制[J]. 电力系统自动化, 2014, 38(22): 26-31. Wang Xiaoliang, Xie Xiaorong, Jiang Qirong, et al.Analysis and mitigation of SSR problems in large-scale wind farms with doubly-fed wind turbines[J]. Automation of Electric Power Systems, 2014, 38(22): 26-31. [11] 于阳. 基于自抗扰控制策略的SVC在风电系统中的应用研究[D]. 天津: 天津理工大学, 2012. [12] 李鹏瀚, 王杰, 吴飞. 双馈风电机组次同步控制相互作用的反馈线性化滑模变结构抑制[J]. 电工技术学报, 2019, 34(17): 3661-3671. Li Penghan, Wang Jie, Wu Fei.Sub-synchronous control interaction mitigation for DFIGs by sliding mode control strategy based on feedback linearization[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3661-3671. [13] 王勃, 王天擎, 于泳, 等. 感应电机电流环非线性积分滑模控制策略[J]. 电工技术学报, 2021, 36(10): 2039-2048. Wang Bo, Wang Tianqing, Yu Yong, et al.Nonlinear integral sliding mode control strategy for current loop of induction motor drives[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2039-2048. [14] 吕广强, 许文敏, 王谱宇. 基于变论域模糊PI自适应控制的电力弹簧控制策略[J]. 电力系统自动化, 2020, 44(18): 172-178. Lv Guangqiang, Xu Wenmin, Wang Puyu.Control strategy for electric spring based on fuzzy proportional-integral self-adaptive control in variable universe[J]. Automation of Electric Power Systems, 2020, 44(18): 172-178. [15] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2007(1): 24-31. Han Jingqing.Auto disturbances rejection control technique[J]. Frontier Science, 2007(1): 24-31. [16] 蒋云涛. 光储联合控制抑制电网低频振荡的研究[D]. 北京: 华北电力大学, 2018. [17] 马燕峰, 霍亚欣, 李鑫, 等. 考虑时滞影响的双馈风电场广域附加阻尼控制器设计[J]. 电工技术学报, 2020, 35(1): 158-166. Ma Yanfeng, Huo Yaxin, Li Xin, et al.Design of wide area additional damping controller for doubly fed wind farms considering time delays[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 158-166. [18] 杜超, 尹忠刚, 李艳琴, 等. 基于重复自抗扰控制的感应电机矢量控制方法[J]. 电工技术学报, 2017, 32(19): 81-89. Du Chao, Yin Zhonggang, Li Yanqin, et al.Research on repetitive-auto disturbance rejection control strategy for induction motors based on vector control[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 81-89. [19] 董顶峰, 黄文新, 卜飞飞, 等. 圆筒型反向式横向磁通直线电机定位力补偿二阶自抗扰控制器位置控制[J]. 电工技术学报, 2021, 36(11): 2365-2373. Dong dingfeng, Huang Wenxin, Bu Feifei, et al. Second-order ADRC position control with detent force compensation for tubular reversal transverse flux linear machine[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2365-2373. [20] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074. Zhu Jinquan, Ge Qiongxuan, Sun Xuemei, et al.Traction-system research of high-speed maglev based on active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1065-1074. [21] 杜博超, 崔淑梅, 宋立伟, 等. 一种基于变频电流信号的IPMSM无位置传感器高频注入电流噪声抑制方法[J]. 电工技术学报, 2020, 35(18): 3830-3837. Du Bochao, Cui Shumei, Song Liwei, et al.A variable frequency current injection sensorless control strategy of IPMSM for audible noise reduction[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3830-3837. [22] 高本锋, 姚磊. 基于改进自抗扰控制的抑制光火打捆经直流送出系统的次同步振荡策略[J]. 电网技术, 2018, 42(2): 533-540. Gao Benfeng, Yao Lei.Sub-synchronous oscillation suppression for photovoltaic-thermal-bundled power system based on improved active disturbance rejection control[J]. Power System Technology, 2018, 42(2): 533-540. [23] 苗淼. 基于自抗扰的STATCOM抑制风电次同步振荡[J]. 电气传动, 2018, 48(5): 53-58. Miao Miao.Damping of sub-synchronous oscillation for wind turbine generator using STATCOM based on active disturbance rejection control[J]. Electric Drive, 2018, 48(5): 53-58. [24] Gao Zhiqiang.Scaling and bandwidth- parameterization based controller tuning[C]//Proceedings of the American Control Conference, Denver, USA, 2003: 4989-4996. [25] 高志强, 李松, 周雪松, 等. 线性自抗扰在光伏发电系统MPPT中的应用[J]. 电力系统保护与控制, 2018, 46(15): 52-59. Gao Zhiqiang, Li Song, Zhou Xuesong, et al.Design of MPPT controller for photovoltaic generation system based on LADRC[J]. Power System Protection and Control, 2018, 46(15): 52-59. [26] 李雪云. 基于线性自抗扰的SVG无功振荡抑制研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [27] 黄碧月, 陈雅皓, 孙海顺, 等. 考虑静止无功补偿器的直驱风电并网系统次同步振荡[J]. 清华大学学报(自然科学版), 2021, 61(5): 446-456. Huang Biyue, Chen Yahao, Sun Haishun, et al.Sub-synchronous oscillation in wind farm integrated power system considering static var compensator[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 446-456. [28] Zhang Dongdong, Liu Tianhao.Effects of voltage sag on the performance of induction motor based on a new transient sequence component method[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 3. [29] 韩京清, 王伟. 非线性跟踪—微分器[J]. 系统科学与数学, 1994, 14(2): 177-183. Han Jingqing, Wang Wei.Nonlinear tracking-differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1994, 14(2): 177-183. [30] 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策, 1995, 10(1): 85-88. Han Jingqing.The "extended state observer" of a class of uncertain systems[J]. Control and Decision, 1995, 10(1): 85-88. [31] 韩京清. 非线性状态误差反馈控制律—NLSEF[J].控制与决策, 1995, 10(3): 221-225. Han Jingqing.Nonlinear state error feedback control law-NLSEF[J]. Control and Decision, 1995, 10(3): 221-225. |
|
|
|