|
|
Control Strategy of Electric Vehicles Oriented to Power System Flexibility |
Yao Yiming1, Zhao Rongsheng2, Li Chunyan1, Yan Zhichao1, Xie Kaigui1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. China Yangtze Power Co. Ltd Yichang 443133 China |
|
|
Abstract With the advancement of the carbon neutrality goal, the renewable energy consumption situation in China will become more severe. There is an urgent need to tap more power system flexibility resources. As a new type of variable load, electric vehicles can enhance the flexibility of the power system through interaction with the grid, and ensure the economic and safe operation of the system. In view of the current lack of research on the charging and discharging control of electric vehicle oriented to power system flexibility, this paper studies the control strategy of electric vehicles oriented to power system flexibility. Given the definition of the flexibility of the power system and electric vehicles, a flexibility dispatch scheme of "calculation of the maximum available flexibility-calculation of power system flexibility demand- flexible control of electric vehicle" is designed to fully tap the flexibility adjustment potentials of electric vehicles to promote the consumption of renewable energy. The analysis of case study demonstrates that the flexible control strategy of electric vehicles proposed in this paper can greatly improve the flexibility of the power system. At the same time, the solution time of the model in this paper is in the order of seconds, which can fully meet the real-time flexibility dispatch requirements of the power system.
|
Received: 15 April 2021
|
|
|
|
|
[1] Mallapaty S.How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483. [2] 国电能源研究院. 新能源产业发展趋势研究报告[R]. 北京: 国家能源局, 2012. [3] North American Electric Reliability Corporation. Special report: potential reliability impacts of emerging flexible resources[R]. Princeton, America: North American Electric Reliability Corporation (NERC), 2010: 2-6. [4] Adams J, Malley M, Hanson K.Flexibility requirements and potential metrics for variable generation: implications for system planning studies[M]. Princeton: NERC, 2010: 14-17. [5] IEA. Global EV Outlook 2018[R]. International Energy Agency, 2018. [6] 吴赋章, 杨军, 林洋佳, 等. 考虑用户有限理性的电动汽车时空行为特性[J]. 电工技术学报, 2020, 35(7): 1563-1574. Wu Fuzhang, Yang Jun, Lin Yangjia, et al.Research on spatiotemporal behavior of electric vehicles considering the users’ bounded rationality[J]. Transactions of China Electrotechnical Society, 2020, 35(7): 1563-1574. [7] Limmer S, Rodemann T.Peak load reduction through dynamic pricing for electric vehicle charging[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 117-128. [8] 银泽一, 王广柱, 程振兴. 基于模块化多电平变换器的插电式混合电动汽车系统充电控制策略[J]. 电工技术学报, 2020, 35(6): 1316-1326. Yin Zeyi, Wang Guangzhu, Cheng Zhenxing.Charge control strategy of plug-in hybrid electric vehicle system based on modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1316-1326. [9] 陈嘉鹏, 汤乃云, 王雪松. 基于电动汽车入网特性的电网经济调度研究[J]. 电气技术, 2019, 20(3): 24-30. Chen Jiapeng, Tang Naiyun, Wang Xuesong.Research on economic dispatch of power grid based on vehicle to grid characteristics of electric vehicle[J]. Electrical Engineering, 2019, 20(3): 24-30. [10] Zhang Guanchen, Tan T S, Wang G G.Real-time smart charging of electric vehicles for demand charge reduction at non-residential sites[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4027-4037. [11] Hou Kai, Xu Xiandong, Jia Hongjie, et al.A reliability assessment approach for integrated transportation and electrical power systems incorporating electric vehicles[J]. IEEE Transactions on Smart Grid, 2018, 9(1): 88-100. [12] 赵玉, 徐天奇, 李琰, 等. 基于分时电价的电动汽车调度策略研究[J]. 电力系统保护与控制, 2020, 48(11): 92-101. Zhao Yu, Xu Tianqi, Li Yan, et al.Research on electric vehicle scheduling strategy based on time-shared electricity price[J]. Power System Protection and Control, 2020, 48(11): 92-101. [13] 陈凯炎, 牛玉刚. 基于V2G 技术的电动汽车实时调度策略[J]. 电力系统保护与控制, 2019, 47(14): 1-9. Chen Kaiyan, Niu Yugang.Real-time scheduling strategy of electric vehicle based on vehicle-to-grid application[J]. Power System Protection and Control, 2019, 47(14): 1-9. [14] 郭春林, 杨晓言, 徐轩, 等. V2G模式下电动汽车与可再生能源双层协调优化[J]. 电力系统及其自动化学报, 2019, 31(9): 72-77. Guo Chunlin, Yang Xiaoyan, Xu Xuan, et al.Bi-level coordinated optimization of electric vehicles and renewable energy sources in V2G mode[J]. Proceedings of the CSU-EPSA, 2019, 31(9): 72-77. [15] 葛晓琳, 郝广东, 夏澍,等. 考虑规模化电动汽车与风电接入的随机解耦协同调度[J]. 电力系统自动化, 2020, 44(4): 54-62. Ge Xiaolin, Hao Guangdong, Xia Shu, et al.Stochastic decoupling collaborative dispatch considering integration of large-scale electric vehicles and wind power[J]. Automation of Electric Power Systems, 2020, 44(4): 54-62. [16] 谭维玉, 雷雨, 李军, 等. 计及动态分时电价的电动汽车参与电网调度研究[J]. 可再生能源, 2020, 38(11): 1515-1522. Tan Weiyu, Lei Yu, Li Jun, et al.Research on the participation of electric vehicles in power system dispatching considering dynamic time-of-use price[J]. Renewable Energy Resources, 2020, 38(11): 1515-1522. [17] 许刚, 张丙旭, 张广超. 电动汽车集群并网的分布式鲁棒优化调度模型[J]. 电工技术学报, 2021, 36(3): 565-578. Xu Gang, Zhang Bingxu, Zhang Guangchao.Distributed and robust optimal scheduling model for large-scale electric vehicles connected to grid[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 565-578. [18] 孔顺飞, 胡志坚, 谢仕炜, 等. 含电动汽车充电站的主动配电网二阶段鲁棒规划模型及其求解方法[J]. 电工技术学报, 2020, 35(5): 1093-1105. Kong Shunfei, Hu Zhijian, Xie Shiwei, et al.Two-stage robust planning model and its solution algorithm of active distribution network containing electric vehicle charging stations[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1093-1105. [19] 赵德仁, 丁雷, 徐立华, 等. 面向可再生能源消纳的主动配电网电动汽车充放电功率和网络重构协调优化调度[J]. 电力系统及其自动化学报, 2019, 31(8): 94-101. Zhao Deren, Ding Lei, Xu Lihua, et al.Coordinated optimal dispatching of EV charging/discharging power and network reconfiguration in active distribution network for renewable energy accommodation[J]. Proceedings of the CSU-EPSA, 2019, 31(8): 94-101. [20] 崔杨, 姜涛, 仲悟之, 等. 电动汽车与热泵促进风电消纳的区域综合能源系统经济调度方法[J]. 电力自动化设备, 2021, 41(2): 1-7. Cui Yang, Jiang Tao, Zhong Wuzhi, et al.Economic dispatch approach of RIES for electric vehicle and heat pump to promote wind power accommodation[J]. Electric Power Automation Equipment, 2021, 41(2): 1-7. [21] 李强, 邓卿, 林鸿基, 等. 计及灵活性的配电系统接纳电动汽车能力评估与提升策略[J]. 电力科学与技术学报, 2019, 34(3): 37-46. Li Qiang, Deng Qing, Lin Hongji, et al.Assessment and enhancement of accommodation capability for electric vehicles by a distribution system with flexibility resources[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 37-46. [22] 杨晓东, 张有兵, 蒋杨昌, 等. 微电网下考虑分布式电源消纳的电动汽车互动响应控制策略[J]. 电工技术学报, 2018, 33(2): 390-400. Yang Xiaodong, Zhang Youbin, Jiang Yangchang, et al.Renewable energy accommodation-based strategy for electric vehicle considering dynamic interaction in microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 390-400. [23] Wang Ran, Wang Ping, Xiao Gaoxi.Two-stage mechanism for massive electric vehicle charging involving renewable energy[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4159-4171. [24] Abdoulmenim B, Kshirasagar N, Ramadan E.A novel online charging algorithm for electric vehicles under stochastic net-load[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1787-1799. [25] Sun Tianhe, Zhang Tieyan, Chen Zhe, et al.Optimal operation of flexible heating systems for reducing wind power curtailment[J]. Electrical Engineering, 2020, 102(2): 869-880. [26] 李振坤, 崔静, 路群, 等. 基于时序动态约束的主动配电网滚动优化调度[J]. 电力系统自动化, 2019, 43(16): 17-24. Li Zhenkun, Cui Jing, Lu Qun, et al.Rolling optimal scheduling of active distribution network based on sequential dynamic constraints[J]. Automation of Electric Power Systems, 2019, 43(16): 17-24. [27] Jonathan S.Loss aversion equilibrium[J]. International Journal of Game Theory, 2000, 29: 269-287. [28] Subcommittee P. IEEE reliability test system[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(6): 2047-2054. [29] Zhang Yixuan, Chen Guipeng, Hu Yihua, et al.Cascaded multilevel inverter based power and signal multiplex transmission for electric vehicles[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(2): 123-129. [30] California ISO. Open access same-time information system[DB/OL]. http://oasis.caiso.com |
|
|
|