|
|
Triple Active Bridge Power Flow Controller Based Unbalanced Power Flow Suppression for Ring Bipolar DC Distribution Network |
He Dalu, Liao Jianquan, Wang Qianggang |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract The ring bipolar DC distribution network suffers from insufficient power flow control degrees of freedom, which leads to uncontrollable power flow in some transmission lines. Besides, there is a coupling between different poles. In this regard, a triple active bridge power flow controller (TAB-PFC) based unbalanced power flow suppression strategy is proposed. Meanwhile, the decoupling control of TAB-PFC is studied. Firstly, the influence of unbalanced receiving-end voltage and power of renewable energy on power flow and line losses is studied. Subsequently, the expressions of line current and output voltage of TAB-PFC under constant power control are derived. Moreover, the small-signal model of the ring bipolar DC distribution network with TAB-PFC is established. On this basis, the decoupling matrix is introduced to realize the approximate decoupling between the positive and negative control loops, which improves the dynamic performance of the control system. A simulation model of the ring bipolar DC distribution network with TAB-PFC is established in MATLAB/Simulink, and an experimental platform is built. The effectiveness of TAB-PFC in suppressing unbalanced power and the proposed decoupling are verified through simulation and experimental results.
|
Received: 16 April 2021
|
|
|
|
|
[1] 李馨雨, 吕煜, 许建中. 具备故障限流功能的新型线间直流潮流控制器[J]. 电力系统自动化, 2020, 44(21): 80-88. Li Xinyu, Lü Yu, Xu Jianzhong.Interline DC power flow controller with fault current limiting function[J]. Automation of Electric Power Systems, 2020, 44(21): 80-88. [2] 廖建权, 周念成, 王强钢, 等. 直流配电网电能质量指标定义及关联性分析[J].中国电机工程学报, 2018, 38(23): 6847-6860, 7119. Liao Jianquan, Zhou Niancheng, Wang Qianggang, et al.Definition and correlation analysis of power quality index of DC distribution network[J]. Proceedings of CSEE, 2018, 38(23): 6847-6860, 7119 [3] Tan D.Structured microgrids (SμGs) and flexible electronic large power transformers (FeLPTs)[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 255-263. [4] 李幸芝, 韩蓓, 李国杰, 等. 考虑非高斯耦合不确定性的交直流配电网两阶段概率状态估计[J]. 电工技术学报, 2020, 35(23): 4949-4960. Li Xingzhi, Han Bei, Li Guojie, et al.Two-stage probabilistic state estimation for AC/DC distribution network considering non-Gaussian coupling uncertainties[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4949-4960. [5] 王浩翔, 赵冬梅, 陶然, 等. 基于分解的多目标进化算法的含MMC-HVDC交直流混合系统最优潮流研究[J].电工技术学报, 2020, 35(17): 3691-3702. Wang Haoxiang, Zhao Dongmei, Tao Ran, et al.Study on optimal power flow for AC/DC hybrid system incorporating MMC-HVDC based on MOEA/D[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3691-3702. [6] 许烽, 徐政, 刘高任. 新型直流潮流控制器及其在环网式直流电网中的应用[J]. 电网技术, 2014, 38(10): 2644-2650. Xu Feng, Xu Zheng, Liu Gaoren.A neotype of DC power flow controller and its applications in meshed DC grids[J]. Power System Technology, 2014, 38(10): 2644-2650. [7] 姚良忠, 崔红芬, 李官军, 等. 柔性直流电网串联直流潮流控制器及其控制策略研究[J]. 中国电机工程学报, 2016, 36(4): 945-952. Yao Liangzhong, Cui Hongfen, Li Guanjun, et al.Studies of series DC power flow controller and its control strategy in the VSC based DC grid[J]. Proceedings of the CSEE, 2016, 36(4): 945-952. [8] 李国庆, 边竞, 王鹤, 等. 适用于直流电网的环流式线间直流潮流控制器[J]. 电工技术学报, 2020, 35(5): 1118-1127. Li Guoqing, Bian Jing, Wang He, et al.A circulating current interline DC power flow controller for DC grid[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1118-1127. [9] 武文, 吴学智, 荆龙, 等. 适用于多端直流输电系统的模块化多端口直流潮流控制器[J]. 电工技术学报, 2019, 34(3): 539-551. Wu Wen, Wu Xuezhi, Jing Long, et al.A modular multi-port DC power flow controller for multi-terminal DC transmission system[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 539-551. [10] Zhong Xu, Zhu Miao, Chi Yongning, et al.Composite DC power flow controller[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3530-3542. [11] Gomid-Bellmunt O, Sau-Bassols J, Prieto-Araujo E, et al.Flexible converters for meshed HVDC grids: from flexible AC transmission systems (FACTS) to flexible DC grids[J]. IEEE Transactions on Power Delivery, 2020, 35(1): 2-15. [12] Jovcic D, Hajian M, Zhang H, et al.Power flow control in DC transmission grids using mechanical and semiconductor based DC/DC devices[C]//The 10th IET International Conference on AC and DC Power Transmission, Birmingham, UK, 2012: 1-6. [13] Mu Qing, Liang Jun, Li Yalou, et al.Power flow control devices in DC grids[C]//2012 IEEE Power and Energy Society General Meeting, San Diego, USA, 2012: 1-7. [14] Hertem V D, Verboomen J, Purchala K, et al.Usefulness of DC power flow for active power flow analysis with flow controlling devices[C]//The 8th IEEE International Conference on AC and DC Power Transmission, London, UK, 2006: 58-62. [15] Balasubramaniam S, Ugalde-Loo C E, Liang J, et al. Experimental validation of dual H-bridge current flow controllers for meshed HVDC grids[J] IEEE Transactions on Power Delivery, 2018, 33(1): 381-392. [16] Cheng Danni, Zou Jianlong.Power flow calculation method of DC grid with interline DC power flow controller (IDCPFC)[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 2019: 1-5. [17] Chen Wu, Zhu Xu, Yao Liangzhong, et al.An interline DC power-flow controller (IDCPFC) for multiterminal HVDC system[J]. IEEE Transactions on Power Delivery, 2015, 30(4): 2027-2036. [18] Sau-Bassols J, Prieto-Araujo E, Gomis-Bellmunt O, et al.Series interline DC/DC current flow controller for meshed HVDC grids[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 881-891. [19] Jovcic D.Bidirectional, high-power DC transformer[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 2276-2283. [20] Rouzbehi K, Heidary Y S S, Shariati M N. Power flow control in multi-terminal HVDC grids using a serial-parallel DC power flow controller[J]. IEEE Access, 2018(6): 56934-56944. [21] Purgat P, Mackay L, Qin Z, et al.On the protection of the power flow control converter in meshed low voltage DC networks[C]//2018 IEEE Energy Conversion Congress and Exposition(ECCE), Portland, USA, 2018: 478-484. [22] Purgat P, Mackay L, Schulz M, et al.Design of a power flow control converter for bipolar meshed LVDC distribution grids[C]//2018 IEEE 18th International Power Electronics and Motion Control Conference, Budapest, Hungary, 2018: 1073-1078. [23] 廖建权, 周念成, 王强钢. 辐射型双极直流配电网不平衡电压分析及抑制[J]. 中国电机工程学报, 2019, 39(18): 5380-5388, 5585. Liao Jianquan, Zhou Niancheng, Wang Qianggang.Analysis and suppression of unbalanced voltage in radiant bipolar DC distribution network[J]. Proceedings of the CSEE, 2019, 39(18): 5380-5388, 5585. [24] Liao Jianquan, Zhou Niancheng, Huang Yuansheng, et al.Unbalanced voltage suppression in a bipolar DC distribution network based on DC electric springs[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1667-1678. [25] 唐巍, 李天锐, 张璐, 等. 基于三相四线制最优潮流的低压配电网光伏-储能协同控制[J]. 电力系统自动化, 2020, 44(12): 31-40. Tang Wei, Li Tianrui, Zhang Lu, et al.Coordinated control of photovoltaic and energy storage system in low-voltage distribution networks based on three-phase four-wire optimal power flow[J]. Automation of Electric Power Systems, 2020, 44(12): 31-40. [26] Vuyyuru U, Maiti S, Chakraborty C.Active power flow control between DC microgrids[J] IEEE Transactions on Smart Grid, 2019, 10(5): 5712-5723. [27] Ericson R W, Maksimovic D.Fundamentals of power electronics[M]. Secaucus: Kluwer Academic Publishers, 2000. [28] Van der Blij N H, Ramirez-Elizondo L M, Spaan M T J, et al. Symmetrical component decomposition of DC distribution systems[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2733-2741. [29] Zhao C, Round S D, Kolar J W.An isolated three-port bidirectional DC-DC converter with decoupled power flow management[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2443-2453. [30] 黄远胜, 刘和平, 苗轶如, 等. 基于并联虚拟电阻的级联DC-DC变换器稳定控制方法[J]. 电工技术学报, 2020, 35(18): 3927-3937. Huang Yuansheng, Liu Heping, Miao Yiru, et al.Cascaded DC-DC converter stability control method based on paralleling virtual resistor[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3927-3937. |
|
|
|