|
|
Multi-Step Rolling Ultra-Short-Term Load Forecasting Based on the Optimized Sparse Coding |
Chu Chenyang1, Qin Chuan1, Ju Ping1, Zhao Jingbo2, Zhao Jian3 |
1. Energy and Electrical Engineering College Hohai University Nanjing 211100 China; 2. Electric Power Research Institute of State Grid Jiangsu Electric Power Co. Ltd Nanjing 210008 China; 3. State Grid Nanjing Power Supply Company Nanjing 210013 China |
|
|
Abstract Ultra-short-term load forecasting is the basis of intra-day rolling scheduling for the dispatching departments. An optimized sparse coding based multi-step load forecasting method is proposed to make rolling forecast of the load power in the next 4 hours. Firstly, the historical load power time series data are used to create the predictor/response dictionaries pair with time-lag, then the multi-step load forecasting model can be built via sparse coding. Secondly, considering the similarity of the load power time series data, the atoms of the dictionaries pair are filtered according to the extended symbolic aggregate approximation distance between the real-time load power data and the vectors of the dictionaries, which improves the load forecasting accuracy. Finally, error analysis is performed. It is found that the forecast errors during the period of load ramping up are always larger than that of the other periods. Therefore, the error correction model based on the load increment forecasting is proposed to further improve the prediction accuracy. The effectiveness of the proposed method is verified by the case of real-world load power dataset.
|
Received: 06 August 2020
|
|
|
|
|
[1] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1-11. Kang Chongqing, Xia Qing, Zhang Boming.Review of power system load forecasting and its development[J]. Automation of Electric Power Systems, 2004, 28(17): 1-11. [2] 张伯明, 吴文传, 郑太一, 等. 消纳大规模风电的多时间尺度协调的有功调度系统设计[J]. 电力系统自动化, 2011, 35(1): 1-6. Zhang Boming, Wu Wenchuan, Zheng Taiyi, et al.Design of a multi-time scale coordinated active power dispatching system for accommodating large scale wind power penetration[J]. Automation of Electric Power Systems, 2011, 35(1): 1-6. [3] 颜湘武, 徐韵, 李若瑾, 等. 基于模型预测控制含可再生分布式电源参与调控的配电网多时间尺度无功动态优化[J]. 电工技术学报, 2019, 34(10): 2022-2037. Yan Xiangwu, Xu Yun, Li Ruojin, et al.Multi-time scale reactive power optimization of distribution grid based on model predictive control and including RDG regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2022-2037. [4] 李滨, 黄佳, 吴茵, 等. 基于气象信息粒还原的台风分时段短期负荷预测[J]. 电工技术学报, 2018, 33(9): 2068-2076. Li Bin, Huang Jia, Wu Yin, et al.Typhoon-period short term load forecasting based on particle reduction of weather information[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2068-2076. [5] 崔航, 王冕, 罗贵明, 等. 基于扩展时序距离法和自适应控制的超短期负荷预测[J]. 电力系统自动化, 2009, 33(15): 38-42. Cui Hang, Wang Mian, Luo Guiming, et al.Ultra-short term load forecasting based on adaptive control and extended time-series distance method[J]. Automation of Electric Power Systems, 2009, 33(15): 38-42. [6] 张振高, 杨正瓴. 短期负荷预测中的负荷求导法及天气因素的使用[J]. 电力系统及其自动化学报, 2006, 18(5): 79-83. Zhang Zhengao, Yang Zhengling.Load derivation in short term forecasting using weather factor[J]. Proceedings of the CSU-EPSA, 2006, 18(5): 79-83. [7] 王新, 孟玲玲. 基于EEMD-LSSVM的超短期负荷预测[J]. 电力系统保护与控制, 2015, 43(1): 61-66. Wang Xin, Meng Lingling.Ultra-short-term load forecasting based on EEMD-LSSVM[J]. Power System Protection and Control, 2015, 43(1): 61-66. [8] 刘念, 张清鑫, 刘海涛. 基于核函数极限学习机的微电网短期负荷预测方法[J]. 电工技术学报, 2015, 30(8): 218-224. Liu Nian, Zhang Qingxin, Liu Haitao.Online short-term load forecasting based on ELM with kernel algorithm in micro-grid environment[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 218-224. [9] 王晨, 寇鹏. 基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J]. 电工技术学报, 2020, 35(13): 2723-2735. Wang Chen, Kou Peng.Wind speed forecasts of multiple wind turbines in a wind farm based on integration model built by convolutional neural network and simple recurrent unit[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2723-2735. [10] Tan Mao, Yuan Siping, Li Shuaihu, et al.Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning[J]. IEEE Transactions on Power Systems, 2019, 35(4): 2937-2948. [11] Yi Yang, Shang Zhihao, Chen Yanhua, et al.Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting[J]. Energies, 2020, 13(3): 532. [12] Yan Ke, Wang Xudong, Du Yang, et al.Multi-step short-term power consumption forecasting with a hybrid deep learning strategy[J]. Energies, 2018, 11(11): 3089. [13] Deng Zhuofu, Wang Binbin, Xu Yanlu, et al.Multi-scale convolutional neural network with time-cognition for multi-step short-term load forecasting[J]. IEEE Access, 2019, 7: 88058-88071. [14] Bouktif S, Fiaz A, Ouni A, et al.Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches[J]. Energies, 2018, 11(7): 1636. [15] Helmi A, Fakhr M W, Atiya A F.Multi-step ahead time series forecasting via sparse coding and dictionary based techniques[J]. Applied Soft Computing, 2018, 69: 464-474. [16] Efron B, Hastie T, Johnstone I, et al.Least angle regression[J]. The Annals of Statistics, 2004, 32(2): 407-499. [17] 吴润泽, 包正睿, 王文韬, 等. Hadoop架构下基于模式匹配的短期电力负荷预测方法[J]. 电工技术学报, 2018, 33(7): 1542-1551. Wu Runze, Bao Zhengrui, Wang Wentao, et al.Short-term power load forecasting method based on pattern matching in Hadoop framework[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1542-1551. [18] 李啸骢, 李春涛, 从兰美, 等. 基于动态权值相似日选取算法的短期负荷预测[J]. 电力系统保护与控制, 2017, 45(6): 1-8. Li Xiaocong, Li Chuntao, Cong Lanmei, et al.Short-term load forecasting based on dynamic weight similar day selection algorithm[J]. Power System Protection and Control, 2017, 45(6): 1-8. [19] Sun Youqiang, Li Jiuyong, Liu Jixue, et al.An improvement of symbolic aggregate approximation distance measure for time series[J]. Neurocomputing, 2014, 138: 189-198. [20] Yahyaoui H, Al-Daihani R.A novel trend based SAX reduction technique for time series[J]. Expert Systems with Applications, 2019, 130: 113-123. [21] Yang Youlong, Che Jinxing, Deng Chengzhi, et al.Sequential grid approach based support vector regression for short-term electric load forecasting[J]. Applied Energy, 2019, 238: 1010-1021. [22] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2017. |
|
|
|