Multi-Energy Complementary Collaborative Peak-Load Shifting Strategy Based on Electro-Thermal Hybrid Energy Storage System
Zhang Chao1, Feng Zhongnan2, Deng Shaoping1, Jia Changjie1, Lu Sheng1
1. Power China Hubei Electric Engineering Co. Ltd Wuhan 430040 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China
Abstract In view of the increasingly load fluctuation in power grid, the electro-thermal hybrid energy storage system was firstly proposed for peak-load shifting in integrated energy community, considering the deep coupling of multi-energy on the load side. Based on the hybrid operation model of battery and phase change material energy storage system, an electro-thermal combined peak-load shifting strategy was put forward with multi-attribute decision making, taking load variance and operation cost into consideration. The stochastic volatility model was used to forecast the load of the community, and the anti-risk ability of the proposed strategy to deal with load fluctuation was analyzed. According to the case study of a business community in Shenzhen, the electro-thermal hybrid energy storage system can making full use of the flexible bidirectional charging characteristic of battery energy storage and the long-term scale adjustment ability of phase change material energy storage. And the proposed strategy is capable of effectively promoting the ability of peak-load shifting and improving the operation economic benefits of the community on the premise of meeting the thermal demand of users.
Zhang Chao,Feng Zhongnan,Deng Shaoping等. Multi-Energy Complementary Collaborative Peak-Load Shifting Strategy Based on Electro-Thermal Hybrid Energy Storage System[J]. Transactions of China Electrotechnical Society, 2021, 36(zk1): 191-199.
[1] Yang Xiaojiao, Sun Liangliang, Yuan Yanping, et al.Experimental investigation on performance com- parison of PV/T-PCM system and PV/T system[J]. Renewable Energy, 2018, 119: 152-159. [2] Wang Yibo, Shao Xinyang, Liu Chuang, et al.Analy- sis of wind farm output characteristics based on descriptive statistical analysis and envelope domain[J]. Energy, 2019, 170: 580-591. [3] 陶顺, 陈鹏伟, 肖湘宁, 等. 智能配电网不确定性建模与供电特征优化技术综述[J]. 电工技术学报, 2017, 32(10): 77-91. Tao Shun, Chen Pengwei, Xiao Xiangning, et al.Review on uncertainty modeling and power supply characteristics optimization technology in smart distribution network[J]. Transactions of China Elec- trotechnical Society, 2017, 32(10): 77-91. [4] 孙丙香, 李旸熙, 龚敏明, 等. 参与AGC辅助服务的锂离子电池储能系统经济性研究[J]. 电工技术学报, 2020, 35(19): 4048-4061. Sun Bingxiang, Li Yangxi, Gong Minming, et al.Study on the economy of energy storage system with lithium-ion battery participating in AGC auxiliary service[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4048-4061. [5] Alramlawi M, Li Pu.Design optimization of a residential PV-battery microgrid with a detailed battery lifetime estimation model[J]. IEEE Transa- ctions on Industry Applications, 2020, 56(2): 20-30. [6] Uddin M, Romlie M F, Abdullah M F, et al. A novel peak shaving algorithm for islanded microgrid using battery energy storage system[J]. Energy, 2020, 196(Apr.1): 117084.1-117084.13. [7] 赵乙潼, 王慧芳, 何奔腾, 等. 面向用户侧的电池储能配置与运行优化策略[J]. 电力系统自动化, 2020, 44(6): 121-130. Zhao Yitong, Wang Huifang, He Benteng, et al.Optimization strategy of configuration and operation for user-side battery energy storage[J]. Automation of Electric Power Systems, 2020, 44(6): 121-130. [8] 卫志农, 张思德, 孙国强, 等. 计及电转气的电-气互联综合能源系统削峰填谷研究[J]. 中国电机工程学报, 2017, 37(16): 4601-4609, 4885. Wei Zhinong, Zhang Side, Sun Guoqiang, et al.Power-to-gas considered peak load shifting research for integrated electricity and natural-gas energy systems[J]. Proceedings of the CSEE, 2017, 37(16): 4601-4609, 4885. [9] 秦强强, 郭婷婷, 林飞, 等. 基于能量转移的城轨交通电池储能系统能量管理和容量配置优化[J]. 电工技术学报, 2019, 34(增刊1): 414-423. Qin Qiangqiang, Guo Tingting, Lin Fei, et al.Optimal research for energy management and con- figuration of battery ESS in urban rail transit based on energy transfer[J]. Transactions of China Elec- trotechnical Society, 2019, 34(S1): 414-423. [10] Prasatsap U, Kiravittaya S, Polprasert J.Deter- mination of optimal energy storage system for peak shaving to reduce electricity cost in a university[J]. Energy Procedia, 2017, 138: 967-972. [11] 郑顺, 周翔, 张静思, 等. 上海地区住宅夏季空调能耗调查分析[J]. 暖通空调, 2016, 46(3): 38-41. Zheng Shun, Zhou Xiang, Zhang Jingsi, et al.Survey and analysis on energy consumption of air con- ditioning for residential buildings in Shanghai in summer[J]. Heating Ventilating & Air Conditioning, 2016, 46(3): 38-41. [12] 魏繁荣, 林湘宁, 陈乐, 等. 基于建筑相变材料储能的微网综合能源消纳系统[J]. 中国电机工程学报, 2018, 38(3): 792-804. Wei Fanrong, Lin Xiangning, Chen Le, et al.Microgrid comprehensive energy consumption system based on phase change building materials[J]. Proceedings of the CSEE, 2018, 38(3): 792-804. [13] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543. Diao Hanbin, Li Peiqiang, Wang Jifei, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543. [14] 杜进桥, 李艳, 随权, 等. 基于相变储能系统主动响应能力挖掘的配电网经济调度[J]. 电力自动化设备, 2020, 40(4): 210-217. Du Jinqiao, Li Yan, Sui Quan, et al.Economic dispatch of distribution network based on active response capability mining of phase change material energy storage system[J]. Electric Power Automation Equipment, 2020, 40(4): 210-217. [15] 张媛琳, 谭宽. 相变储能系统在数据中心中的应用[J]. 信息与电脑, 2019, 31(22): 6-7. Zhang Yuanlin, Tan Kuan.Application on phase change energy storage system in IDC[J]. China Computer & Communication, 2019, 31(22): 6-7. [16] 任永峰, 薛宇, 云平平, 等. 马尔可夫预测的多目标优化储能系统平抑风电场功率波动[J]. 电力系统自动化, 2020, 44(6): 67-76. Ren Yongfeng, Xue Yu, Yun Pingping, et al.Multi-objective optimization of energy storage system with Markov prediction for power fluctuation suppression of wind farm[J]. Automation of Electric Power Systems, 2020, 44(6): 67-76. [17] 张健, 王凯悦. 考虑电压稳定性的含分布式电源配电网多目标无功优化[J]. 电气技术, 2020, 21(3): 64-69. Zhang Jian, Wang Kaiyue.Multi-objective reactive power optimization in distribution network with distributed generation considering voltage stability[J]. Electrical Engineering, 2020, 21(3): 64-69. [18] 江岳文, 陈晓榕. 基于D-U空间混合多属性决策的风电场装机容量优化[J]. 电网技术, 2019, 43(12): 4451-4461. Jiang Yuewen, Chen Xiaorong.Optimization of installed capacity of wind farm with mixed multiple attribute decisions based on D-U space[J]. Power System Technology, 2019, 43(12): 4451-4461. [19] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2018, 33(5): 1076-1085. Zhao Dongmei, Yin Jiafu.Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncer- tainty[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1076-1085. [20] 陈昊, 王玉荣. 基于随机波动模型的短期负荷预测[J]. 电力自动化设备, 2010, 30(11): 86-89. Chen Hao, Wang Yurong.Short-term load forecasting based on SV model[J]. Electric Power Automation Equipment, 2010, 30(11): 86-89. [21] 周双酉, 钱夕元. 基于经验似然贝叶斯计算方法在随机波动模型中的应用[J]. 数学的实践与认识, 2020, 50(6): 8-15. Zhou Shuangyou, Qian Xiyuan.SV model estimation based on Bayesian computation with empirical like- lihood[J]. Mathematics in Practice and Theory, 2020, 50(6): 8-15.