|
|
Improved Control Strategy for Inertia and Primary Frequency Regulation of Doubly Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor Energy Storage |
Yan Xiangwu1, Sun Xuewei2, Cui Sen1, Li Xiaoyu1, Li Tiecheng3 |
1. Hebei Provincial Key Laboratory of Distributed Energy Storage and Microgrid North China Electric Power University Baoding 071003 China; 2. State Grid Tianjin Procurement Company Tianjin 300304 China; 3. State Grid Hebei Electric Power Research Institute Shijiazhuang 050021 China |
|
|
Abstract The large-scale application of wind power eases the conventional energy shortage's pressure, but it brings great hidden danger to the safe and stable operation of power grid as the wind power does not have the ability of frequency regulation. Doubly-fed induction generator (DFIG) can effectively respond to the frequency fluctuation when using rotor kinetic energy to participate in the system frequency regulation, but it has the problems of frequency secondary drop and output active power reduction when exiting frequency regulation, besides it can not provide long-term power support. To solve this problem, a coordinated frequency control strategy based on rotor kinetic energy and supercapacitor energy storage is proposed in this paper after analyzing the inertia sustaining capability of rotor kinetic energy. By using rotor kinetic energy and supercapacitor to realize the inertia and droop characteristics like synchronous generator respectively, it can ensure DFIG provide fast and long-term power support when system frequency fluctuates. Besides, supercapacitor is controlled to increase the output active power when rotor kinetic energy exits inertia sustaining, so as to avoid secondary frequency drop caused by the power sudden drop. The tracking curve of rotor speed and output power is changed during the rotor speed recovery, so as to minimize the reduction of output active power.
|
Received: 23 May 2020
|
|
|
|
|
[1] 国家能源局. 我国能源产业转型升级迈出新步伐[EB/OL]. 2019-12-20. http://www.nea.gov.cn/2019-12/ 20/c_138646145.htm. [2] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154, 5395. Yuan Xiaoming, Cheng Shijie, Hu Jiabing.Multi- time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154, 5395. [3] Nordic Grid.Nordic grid code 2007[R]. Helsinki, Finland: Nordic Grid, 2007. [4] 中国电力科学研究院. 风电场接入电力系统技术规定: GB/T 19963-2011[S]. 北京:中国国家标准化管理委员会, 2011. [5] National Grid (Great Britain)Company. The grid code[R]. London, UK: National Grid (Great Britain) Company, 2009. [6] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26, 33. Tian Xinshou, Wang Weisheng, Chi Yongning, et a1. Variable parameter virtual inertia control based on effective energy storage of DFIG based wind turbines[J]. Automation of Electric Power Systems, 2015, 39(5): 20-26, 33. [7] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(2): 225-232. Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 225-232. [8] 曹军, 王虹富, 邱家驹. 变速恒频双馈风电机组频率控制策略[J]. 电力系统自动化, 2009, 33(13): 78-82. Cao Jun, Wang Hongfu, Qiu Jiaju.Frequency control strategy of variable speed constant frequency doubly fed induction generator wind turbines[J]. Automation of Electric Power Systems, 2009, 33(13): 78-82. [9] Vidyanandan K V, Senroy N.Primary frequency regulation by deloaded wind turbines using variable droop[J]. IEEE Transaction on Power Systems, 2013, 28(2): 837-846. [10] 丁磊, 尹善耀, 王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39(9): 2385-2391. Ding Lei, Yin Shanyao, Wang Tongxiao, et al.Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power System Technology, 2015, 39(9): 2385-2391. [11] Zertek A, Verbic G, Pantos M.Optimised control approach for frequency-control contribution of variable speed wind turbines[J]. IET Renewable Power Generation, 2012, 6(1): 17-23. [12] 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35(7): 1596-1605. Liu Ju, Yao Wei, Wen Jinyu, et al.A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of the CSEE, 2015, 35(7): 1596-1605. [13] 王晓东, 李凯凯, 刘颖明, 等. 基于状态观测器的风电机组单机储能系统虚拟惯量控制[J]. 电工技术学报, 2018, 33(6): 1257-1264. Wang Xiaodong, Li Kaikai, Liu Yingming, et al.Virtual inertia control based of energy storage system in wind turbine on extended state observer[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1257-1264. [14] 江全元, 龚裕仲. 储能技术辅助风电并网控制的应用综述[J]. 电网技术, 2015, 39(12): 3360-3368. Jiang Quanyuan, Gong Yuzhong.Review of wind power integration control with energy storage tech- nology[J]. Power System Technology, 2015, 39(12): 3360-3368. [15] Miao Lu, Wen Jinyu, Xie Hailian, et al.Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support[J]. IEEE Transactions on Industry Applications, 2015, 54(1): 2732-2742. [16] 周天沛, 孙伟. 高渗透率下变速风力机组虚拟惯性控制的研究[J]. 中国电机工程学报, 2017, 37(2): 486-496. Zhou Tianpei, Sun Wei.Study on virtual inertia control for DFIG based wind farms with high penetration[J]. Proceedings of the CSEE, 2017, 37(2): 486-496. [17] 赵晶晶, 李敏, 何欣芹, 等. 基于限转矩控制的风储联合调频控制策略[J]. 电工技术学报, 2019, 34(23): 4982-4990. Zhao Jingjing, Li Min, He Xinqin, et al.Coordinated control strategy of wind power and energy storage in frequency regulation based on torque limit control[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4982-4900. [18] 解大, 冯俊淇, 娄宇成, 等. 基于三质量块模型的双馈风机小信号建模和模态分析[J]. 中国电机工程学报, 2013, 33(增刊1): 21-29. Xie Da, Feng Junqi, Lou Yucheng, et al.Small-signal modelling and modal analysis of DFIG-based wind turbine based on three-mass shaft model[J]. Pro- ceedings of the CSEE, 2013, 33(S1): 21-29. [19] 刘彬彬, 杨健维, 廖凯, 等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17-22. Liu Binbin, Yang Jianwei, Liao Kai, et al.Improved frequency control strategy for DFIG-based wind turbine based on rotor kinetic energy control[J]. Automation of Electric Power Systems, 2016, 40(16): 17-22. [20] 陈宇航, 王刚, 侍乔明, 等. 一种新型风电场虚拟惯量协同控制策略[J]. 电力系统自动化, 2015, 39(5): 27-33. Chen Yuhang, Wang Gang, Shi Qiaoming, et al.A new coordinated virtual inertia control strategy for wind farms[J]. Automation of Electric Power Systems, 2015, 39(5): 27-33. [21] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Liu Hui, Ge Jun, Gong Yu, et al.Wind farm participation in grid primary frequency optimization scheme selection and wind storage coordination control strategy research[J]. Global Energy Internet, 2019, 2(1): 44-52. [22] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [23] 张俊武. 双馈风电机组并网的电力系统调频和AGC优化控制研究[D]. 成都: 西南交通大学, 2018. |
|
|
|