|
|
Analytical 3D Temperature Field Model for Power Module Considering Temperature Effect of Semiconductor Voltage Drop |
Chen Yu, Zhou Yu, Luo Haoze, Li Wuhua, He Xiangning |
College of Electrical Engineering Zhejiang University Hangzhou 310027 China |
|
|
Abstract Insulated gate bipolar transistor power modules are widely used in EV powertrain systems. The thermal design is challenged by the demands of high power density and extreme operating conditions. Due to the temperature effect of semiconductor voltage drop, the chip current presents a non-uniform distribution. Therefore, the traditional thermal model cannot accurately describe the temperature field, which brings difficulties to the robustness design under overcurrent conditions. In this paper, combined with a continuous 3-D temperature field model and a multicellular 1-D electrical model, a field-circuit coupling based 3-D temperature field is proposed to achieve accurate description of the semiconductor temperature. The error is less than 4.0%. Furthermore, it is found that the multicellular current is concentrated on the edge of the IGBT active region. The non-uniform effect can suppress the peak temperature and can effectively improve the overcurrent capability. Finally, the proposed analytical model is verified by the SEMiX603GB12E4p module. The FEM and experimental results show that the model can describe the temperature effect at different current levels, and its accuracy and effectiveness are verified.
|
Received: 01 November 2020
|
|
|
|
|
[1] 曾正, 欧开鸿, 吴义伯, 等. 车用双面散热功率模块的热-力协同设计[J]. 电工技术学报, 2020, 35(14): 3050-3064. Zeng Zheng, Ou Kaihong, Wu Yibo, et al.Thermo- mechanical co-design of double sided cooling power module for electric vehicle application[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(14): 3050-3064. [2] 唐勇, 汪波, 陈明, 等. 高温下的IGBT可靠性与在线评估[J]. 电工技术学报, 2014, 29(6): 17-23. Tang Yong, Wang Bo, Chen Ming, et al.Reliability and on-line evaluation of IGBT modules under high temperature[J]. Transactions of China Electro- technical Society, 2014, 29(6): 17-23. [3] 罗皓泽, 高洪艺, 朱春林, 等. 电动汽车IGBT芯片技术综述和展望[J]. 中国电机工程学报, 2020, 40(18): 5718-5730. Luo Haoze, Gao Hongyi, Zhu Chunlin, et al.Review and prospect of IGBT chip technologies for electric vehicles[J]. Proceedings of the CSEE, 2020, 40(18): 5718-5730. [4] 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命损耗研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Zheng, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. [5] Baker N, Dupont L, Munk-Nielsen S, et al.IR camera validation of IGBT junction temperature measurement via peak gate current[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 3099-3111. [6] Du B, Hudgins J L, Santi E, et al.Transient electro- thermal simulation of power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 237-248. [7] 袁登科, 徐延东, 李秀涛. 永磁同步电动机变频调速系统及其控制[M]. 北京: 机械工业出版社, 2015. [8] 李辉, 胡玉, 王坤, 等. 考虑杂散电感影响的风电变流器IGBT功率模块动态结温计算及热分布[J]. 电工技术学报, 2019, 34(20): 4242-4250. Li Hui, Hu Yu, Wang Kun, et al.Thermal distribution and dynamic junction temperature calculation of IGBT power modules for wind turbine converters considering the influence of stray inductances[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4242-4250. [9] 马铭遥, 郭伟生, 严雪松, 等. 用于电动汽车功率模块热分析的紧凑型热网络模型[J]. 中国电机工程学报, 2020, 40(18): 5796-5805. Ma Mingyao, Guo Weisheng, Yan Xuesong, et al.Compact thermal network model for thermal analysis of power modules in electric vehicle[J]. Proceedings of the CSEE, 2020, 40(18): 5796-5805. [10] 刘宾礼, 罗毅飞, 肖飞, 等. 基于传热动力学作用特征的IGBT结温预测数学模型[J]. 电工技术学报, 2017, 32(12): 79-87. Liu Binli, Luo Yifei, Xiao Fei, et al.Junction temperature prediction mathematical model of IGBT based on the characteristics of thermal dynamics[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 79-87. [11] Bahman A S, Ma K, Blaabjerg F.A lumped thermal model including thermal coupling and thermal boundary conditions for high-power IGBT modules[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2518-2530. [12] 贾英杰,肖飞,罗毅飞,等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. Jia Yingjie, Xiao Fei, Luo Yifei, et al.Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. [13] Schwabe C, Seidel P, Lutz J.Power cycling capability of silicon low-voltage MOSFETs under different operation conditions[C]//31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, 2019: 495-498. [14] Wu Rui, Iannuzzo F, Wang Huai, et al.Fast and accurate Icepak-PSpice co-simulation of IGBTs under short-circuit with an advanced PSpice model[C]//IET International Conference on Power Electronics, Machines and Drives, Manchester, UK, 2014: 1-5. [15] Riccio M, Falco G D, Maresca L, et al.3D electro- thermal simulations of wide area power devices operating in avalanche condition[J]. Microelectronics Reliability, 2012, 52(9): 2385-2390. [16] 郑利兵, 韩立, 刘钧, 等. 基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J]. 电工技术学报, 2011, 26(7): 242-246. Zheng Libing, Han Li, Liu Jun, et al.Investigation of the temperature character of IGBT failure mode based on 3D thermal-electro coupling FEM[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 242-246. [17] Choudhury K R, Rogers D.Steady-state thermal modeling of a power module: an N-layer Fourier approach[J]. IEEE Transactions on Power Electronics, 2018, 34(2): 1500-1508. [18] 熊诗成, 鲁军勇, 郑宇锋, 等. 基于各层材料传热特性的晶闸管结温计算等效电路模型[J]. 中国电机工程学报, 2018, 38(4): 1157-1164. Xiong Shicheng, Lu Junyong, Zheng Yufeng, et al.Equivalent circuit model based on the heat transfer characteristics of each layer for pulsed power thyristor junction temperature calculation[J]. Pro- ceedings of the CSEE, 2018, 38(4): 1157-1164. [19] Zhang Yiming, Deng Erping, Zhao Zhibin, et al.A physical thermal network model of press pack IGBTs considering spreading and coupling effects[J]. IEEE Transactions on Components, Packaging and Manufa- cturing Technology, 2020, 10(10): 1674-1683. [20] Wang Kangjia, Pan Zhongliang.An analytical model for steady-state and transient temperature fields in 3-D integrated circuits[J]. IEEE Transactions on Components, Packaging and Manufacturing Tech- nology, 2016, 6(7): 1-14. [21] 陈玉香. 大容量沟槽栅——场截止型IGBT本征关断特性和短路强健性研究[D]. 杭州: 浙江大学, 2019. [22] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. [23] Andrea I, Giovanni B, Paolo S.New developments of THERMOS3, a tool for 3D electrothermal simulation of smart power MOSFETs[J]. Microelectronics Reliability, 2007, 47(1): 1696-1700. [24] 贾英杰, 罗毅飞, 肖飞, 等. 一种符合欧姆定律的IGBT等效电阻模型[J]. 电工技术学报, 2020, 35(2): 310-317. Jia Yingjie, Luo Yifei, Xiao Fei, et al.An equivalent electrical resistance model of IGBT suitable for Ohm's law[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 310-317. [25] Chen Jie, Deng Erping, Xie Luhong, et al.Investigations on averaging mechanisms of virtual junction temperature determined by VCE(T) method for IGBTs[J]. IEEE Transactions on Electronic Devices, 2020, 67(3): 1106-1112. [26] Akbari M, Bahman A S, Reigosa P D, et al.Thermal modeling of wire-bonded power modules considering non-uniform temperature and electric current inter- actions[J]. Microelectronics Reliability, 2018, 88(3): 1135-1140. |
|
|
|