|
|
Radiation Sensitivity Analysis of Multiconductor Transmission Lines Based on Generalized Polynomial Chaos Method |
Yu Quanyi1, Liu Changying1, Wu Dingchao2, Wang Tianhao1, Chi Yaodan3 |
1. College of Instrumentation and Electrical Engineering Jilin University Changchun 130061 China 2. EMC Center of FAW-Volkswagen Automotive Co. Ltd Changchun 130013 China 3. Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving Jilin Jianzhu University Changchun 130118 China |
|
|
Abstract In this paper, generalized polynomial chaos (gPC) method is used to analyze the uncertainty of radiation sensitivity response of multiconductor transmission lines. In the multiconductor transmission lines radiation sensitivity model, due to the complexity of the electromagnetic environment in the actual situation, elevationθ, azimuth Ψ, polarization η and electrical level amplitude E0 have strong randomness as related input variables. In this paper, a multiconductor transmission lines model with infinite ground as reference conductor is adopted. The above four parameters are taken as random input variables and subjected to different distribution types. Based on the gPC and multiconductor transmission lines theory, the statistical characteristic parameters such as mean, standard deviation and probability distribution of radiation sensitivity of transmission lines are calculated. In order to ensure the EMC performance of transmission lines system and provide theoretical guidance for electromagnetic protection measures, this paper combines gPC method and Sobol global sensitivity analysis method based on variance decomposition to calculate the relevant parameters, so as to obtain the influence degree of each random input variable on the radiation sensitivity of transmission lines in the system. The results of this method are compared with those based on Monte Carlo method (MC) to verify the feasibility and efficiency of this method.
|
Received: 25 July 2019
|
|
|
|
|
[1] Taylor C, Satterwhite R, Harrison C.The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field[J]. IEEE Transactions on Antennas and Propagation, 1965, 13(6): 987-989. [2] Paul C R. Frequency response of multiconductor transmission lines illuminated by an electromagnetic field[J]. IEEE Transactions on Electromagnetic Compatibility, 1976, EMC-18(4): 183-190. [3] Paul C R.Analysis of multiconductor transmission lines[M]. 2nd ed. New York: Wiley, 2008. [4] Pignari S, Bellan D.Statistical characterization of multiconductor transmission lines illuminated by a random plane-wave field[C]//IEEE International Symposium on Electromagnetic Compatibility, Washington DC, 2000: 606-609. [5] Vogtardatjew R, Leferink F.Experimental plane wave and random field coupling to uniform and non-uniform transmission lines[C]//IEEE International Symposium on Electromagnetic Compatibility, Dresden, Germany, 2015: 767-772. [6] 赵亮, 王世山, 娄千层, 等. 基于三阈值概率分布的多导体传输线电磁参数特性[J]. 电工技术学报, 2018, 33(8): 1663-1673. Zhao Liang, Wang Shishan, Lou Qianceng, et al.Equivalent theory and its realization of the radiated immunity test with incident field excitation coupling to multi-conductor transmission lines based on the consistency[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1663-1673. [7] 朱峰, 邱日强, 牛大鹏, 等. 基于有源传输线模型的地架空屏蔽线缆耦合特性分析与参数计算[J]. 电工技术学报, 2016, 31(4): 22-27. Zhu Feng, Qiu Riqiang, Niu Dapeng, et al.Coupling characteristic analysis and parameter calculation of ground and above-ground shielded cables based on transmission line with a distributed source model[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 22-27. [8] 卢斌先, 王泽忠. 外场激励下多导体传输线响应的节点导纳分析法[J]. 电工技术学报, 2007, 22(10): 145-149. Lu Binxian, Wang Zezhong.Nodal admittance method for response of multiconductor transmission line excited by electromagnetic field[J]. Transactions of China Electrotechnical Society, 2007, 22(10): 145-149. [9] 张昭,王世山,赵亮. 多导体线束内串扰概率分布的预测[J]. 电工技术学报, 2017, 32(7): 204-214. Zhang Zhao, Wang Shishan, Zhao Liang.Prediction of crosstalk probability distribution in cable bundles[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 204-214. [10] Spadacini G, Pignari S A.Numerical assessment of radiated susceptibility of twisted-wire pairs with random nonuniform twisting[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(5): 956-964. [11] SpadaciniG, Grassi F, Marliani F, et al. Transmission-line model for field-to-wire coupling in bundles of twisted-wire pairs above ground[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6): 1682-1690. [12] 高欣欣, 王世山, 娄千层, 等. 基于“一致性”原则的“场-多导体”传输线辐射敏感度测试的等效理论及实现[J]. 电工技术学报, 2018, 31(7): 1588-1598. Gao Xinxin, Wang Shishan, Lou Qianceng, et al.Equivalent theory and its realization of the radiated immunity test with incident field excitation coupling to multi-conductor transmission lines based on the consistency[J]. Transactions of China Electrotechnical Society, 2018, 31(7): 1588-1598. [13] Gao Le, Yu Quanyi, Wu Dingchao, et al.Probabilistic distribution modeling of crosstalk in multi-conductor transmission lines via maximum entropy method[J]. IEEE Access, 2019, 7(1): 103650-103661. [14] Sobol I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics & Computers in Simulation, 2001, 55(1-3): 271-280. [15] 李妍, 周洪伟, 沈小伟, 等. 电力变压器绕组电气参数对绕组变形的全局灵敏度分析[J]. 电力系统保护与控制, 2018, 46(7): 31-37. Li Yan, Zhou Hongwei, Shen Xiaowei, et al.Global sensitivity analysis of winding electrical parameters on power transformer winding deformation[J]. Power System Protection and Control, 2018, 46(7): 31-37. [16] Lum S, Nakhla M, Zhang Q J.Sensitivity analysis of lossy coupled transmission lines with nonlinear terminations[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(4): 607-615. [17] Kouassi A, Bourinet J M, Lallechere S, et al.Reliability and sensitivity analysis of transmission lines in a probabilistic EMC context[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(2): 561-572. [18] 李咸善, 方婧, 郭诗书, 等. 基于灵敏度分析的并网型微电网容量优化配置[J]. 电力系统保护与控制, 2018, 46(23): 14-23. Li Xianshan, Fang Jing, Guo Shishu, et al.Capacity sizing optimal for grid-connected micro-grid based on sensitivity analysis[J]. Power System Protection and Control, 2018, 46(23): 14-23. [19] 陈庆涛, 田宇, 丁国成, 等. 基于灵敏度分析的直流输电接地极优化选址方法研究[J]. 电力系统保护与控制, 2018, 46(21): 131-136. Chen Qingtao, Tian Yu, Ding Guocheng, et al.Optimization method of grounding pole location for HVDC transmission system based on sensitivity analysis[J]. Power System Protection and Control, 2018, 46(21): 131-136. [20] Xiu D, Karniadakis G E.Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. [21] Xiu Dongbin, Karniadakis G E.The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. [22] Wiener N.The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-899. [23] 刘学艺, 李平, 郜传厚. 极限学习机的快速留一交叉验证算法[J]. 上海交通大学学报, 2011, 45(8): 1140-1145. Liu Xueyi, Li Ping, Gao Chuanhou.Fast leave-one-out cross-validation algorithm for extreme learning machine[J]. Journal of Shanghai Jiaotong University, 2011, 45(8): 1140-1145. |
|
|
|