|
|
The Influence of Electric Vehicle Wireless Charging System on Electromagnetic Compatibility and Thermal Effect of Cardiac Pacemaker |
Zhao Jun1,2, Zhao Yihang1,2, Wu Zhijun1,2, Wang Lei3 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300131 China; 2. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health Tianjin 300131 China; 3. Chinese Academy of Medical & Peking Union Medical College Institute of Biomedical Engineer Tianjin 300192 China |
|
|
Abstract In recent years, the issue concerning electromagnetic radiation safety arising from the application of wireless power transmission system in charging electric vehicles has attracted wide attention. This paper constructed an electromagnetic simulation model of both the wireless power transmission system and the cardiac pacemaker and calculated the minimum safety distance under different power levels of the electric vehicle wireless charging system. The electromagnetic compatibility and thermal effect of the wireless power transmission system on the cardiac pacemaker was studied and analyzed. The simulation results show that,at different power levels and at their corresponding minimum safety distances, values of the cardiac pacemaker magnetic field strength are all less than the limit of 150 A/m, indicating that the wireless charging system of electric vehicles will not produce electromagnetic interference to the cardiac pacemaker. In addition, the maximum temperature rise of human body organs is all less than the 1℃. Thus, the electromagnetic thermal effect generated by the system will not cause harm to human body. Meanwhile, since the maximum temperature rise of the cardiac pacemaker is less than the prescribed 2℃, the thermal effect of the pacemaker generated under the electromagnetic radiation environment will not affect the system either.
|
Received: 10 July 2020
|
|
|
|
|
[1] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述(英文)[J]. 电工技术学报, 2019, 34(7): 1353-1380. Fan Xingming, Gao Linlin, Mo Xiaoyong, et al.Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019,34(7): 1353-1380. [2] 张献, 王杰, 杨庆新, 等. 电动汽车动态无线供电系统电能耦合机构与切换控制研究[J]. 电工技术学报, 2019, 34(15): 3093-3101. Zhang Xian, Wang Jie, Yang Qingxin, et al.The power coupling mechanism and switching control for dynamic wireless power supply system of electric vehicle[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3093-3101. [3] 周洪, 蒋燕, 胡文山, 等. 磁共振式无线电能传输系统应用的电磁环境安全性研究及综述[J]. 电工技术学报, 2016, 31(2): 1-12. Zhou Hong, Jiang Yan, Hu Wenshan, et al.Review and research on health and safety issues for magnetically-coupled resonant wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 1-12. [4] 李海燕, 逯迈, 董绪伟. 纯电动汽车典型无线充电线圈电磁暴露安全评估研究[J]. 电工电能新技术, 2019, 38(11): 74-80. Li Haiyan, Lu Mai, Dong Xuwei.Research on electromagnetic exposure safety assessment of typical wireless charging coil for battery electric vehicle[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(11): 74-80. [5] 张献, 白雪宁, 沙琳, 等. 电动汽车无线充电系统不同结构线圈间互操作性评价方法研究[J]. 电工技术学报, 2020, 35(19): 4150-4160. Zhang Xian, Bai Xuening, Sha Lin, et al.Research on interoperability evaluation method of different coils in wireless charging system of electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4150-4160. [6] Gozalvez J.WiTricity-the wireless power transfer [mobile radio][J]. IEEE Vehicular Technology Magazine, 2007, 2(2): 38-44. [7] 颜青. 植入式医疗设备无线能量传输系统电磁环境下的人体安全性研究[D]. 青岛: 中国海洋大学, 2014. [8] 李飞. 植入式人造器官的无线充电系统的设计与实现[D]. 成都: 电子科技大学, 2019. [9] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electromagnetic compatibility of wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2855-2869. [10] Driessen S, Napp A, Schmiedchen K, et al.Electromagnetic interference in cardiac electronic implants caused by novel electrical appliances emitting electromagnetic fields in the intermediate frequency range: a systematic review[J]. EP Europace, 2019, 21(2): 219-229. [11] Tanaka N.Estimation of induced interference voltage at implantable cardiac pacemaker due to 85kHz-band wireless power transfer coils[J]. Molecular Microbiology, 2016, 28(3): 603-613. [12] 宫飞翔, 魏志强, 丛艳平, 等. 植入式医疗设备电磁共振无线能量传输系统天线对人体电磁辐射安全影响的研究[J]. 中国生物医学工程学报, 2016, 35(4): 497-501. Gong Feixiang, Wei Zhiqiang, Cong Yanping, et al.Research on the effects of antenna electromagnetic radiation to human body safety for implantable medical device wireless energy transmission system based on magnetic resonance[J]. Chinese Journal of Biomedical Engineering, 2016, 35(4): 497-501. [13] Wetter T C, Fulda S.Safety of the colonoscope magnetic imaging device (ScopeGuide) in patients with implantable cardiac devices[J]. Endoscopy, 2014, 46(2): 135-138. [14] 陈琛, 黄学良, 谭林林, 等. 电动汽车无线充电时的电磁环境及安全评估[J]. 电工技术学报, 2015, 30(19): 61-67. Chen Chen, Huang Xueliang, Tan Linlin, et al.Electromagnetic environment and security evaluation for wireless charging of electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 61-67. [15] 赵军, 李乃良, 王磊, 等. 电动汽车无线充电系统对人体及体内植入器件电磁安全研究[J]. 电工技术学报, 2018, 33(增刊1): 26-33. Zhao Jun, Li Nailiang, Wang Lei, et al.An electromagnetic safety study about human body and body implanted device in electric vehicle wireless charging system[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 26-33. [16] 李晨曦. 基于大功率无线电能传输的电磁环境分析[D]. 天津: 河北工业大学, 2016. [17] 姚明. 趋肤效应对集成电路铜互连线可靠性设计影响的理论研究[D]. 成都: 电子科技大学, 2013. [18] 徐恒山, 尹忠东, 黄永章. 考虑最大输出电压和效率的 LLC 谐振变流器的设计方法[J]. 电工技术学报, 2018, 33(2): 331-341. Xu Hengshan, Yin Zhongdong, Huang Yongzhang.Design method of LLC resonant converter considering maximum output voltage and efficiency[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 331-341. [19] 高妍, 张献, 杨庆新, 等. 电动汽车无线充电环境的生物电磁安全评估[J]. 电工技术学报, 2019, 34(17): 3581-3589. Gao Yan, Zhang Xian, Yang Qingxin, et al.Bio-electromagnetic safety assessment of wireless charging environment for electric vehicles[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3581-3589. [20] Gabriel S, Lau R W, Gabriel C.The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz[J]. Physics in Medicine & Biology, 1996, 41(11): 2251-2269. [21] 手术植入物, 有源植入式医疗器械. 第 2 部分: 心脏起搏器: GB 16174.2—2015[S]. 2015. [22] Implants For Surgery-Active Implantable MedicalDevices-Part 2: Cardiac Pacemakers: ISO/DIS 14708-2—2011[S]. 2019. [23] 王伟明, 李路明, 郝红伟, 等. 高风险有源植入式医疗器械标准[J]. 中国医疗器械杂志, 2016, 40(6): 428-433. Wang Weiming, Li Luming, Hao Hongwei, et al.High-risk active implantable medical device standards[J]. Chinese Journal of Medical Instrumentation, 2016, 40(6): 428-433. |
|
|
|