|
|
Aqueous Solutions Treated by Cold Atmospheric Plasmas: a Review of the Detection Methods of Aqueous Reactive Species |
Xu Han, Chen Zeyu, Liu Dingxin |
Centre for Plasma Biomedicine Xi'an Jiaotong University Xi'an 710049 China |
|
|
Abstract In recent years, cold atmospheric-pressure plasma has attracted considerable attention due to its great potential in diverse application fields such as biomedicine, material processing, and environmental protection. More and more investigation results show that the plasma-generated reactive species play a key role in these applications. Besides, it is found that targets to be treated by plasmas are always covered by a liquid layer or even immersed in liquids, making the interaction between plasma and liquid inevitable. The gaseous reactive species in cold plasma need to be converted into aqueous ones before they act on the targets. There are many kinds of aqueous reactive species generated by cold atmospheric-pressure plasma, but the cognitive level of plasma-liquid interaction and the development of related applications have been restricted by the lack of methods, poor specificity, and difficulty in quantification of the detection technology. In this paper, the detection methods for eleven kinds of reactive species in plasma-activated water solutions, including reactive oxygen species, reactive nitrogen species and hydrogen species, are summarized and introduced in detail, which can provide a reference for related theoretical and application researches.
|
Received: 15 February 2020
|
|
|
|
|
[1] Guo Li, Li Heping, Wang Liyan, et al . Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium[J]. Applied Physics Letters, 2008, 92(22): 221504. [2] Kong M G, Kroesen G, Morfill G, et al.Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 115012. [3] 熊紫兰, 卢新培, 曹颖光. 等离子体医学[J]. 中国科学, 2011, 41(10): 1279-1298. Xiong Zilan, Lu Xinpei, Cao Yingguang.Plasma medicine[J]. Scientia Sinica(Technological), 2011, 41(10): 1279-1298. [4] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing.Influences of CF4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 159-165. [5] 张凯, 王瑞雪, 韩伟, 等. 等离子体重油加工技术研究进展[J]. 电工技术学报, 2016, 31(24): 1-15. Zhang Kai, Wang Ruixue, Han Wei, et al.Progress of heavy oil processing by plasma technology[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 1-15. [6] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF6废气综述[J]. 电工技术学报, 2016, 31(24): 16-24. Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue.A review of degradation of SF6 waste by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 16-24. [7] 肖雄, 王建国, 吴照国, 等. 等离子体作用后硅橡胶憎水性恢复及憎水迁移特性研究[J]. 电工技术学报, 2019, 34(增刊1): 433-439. Xiao Xiong, Wu Jianguo, Wu Zhaoguo, et al.Study on hydrophobicity recovery and hydrophobicity transfer of plasma treated silicone rubber[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 433-439. [8] Bogle M A, Arndt K A, Dover J S.Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation[J]. Archives of Dermatology, 2007, 143(2): 168-174. [9] von Woedtke T, Reuter S, Masur K, et al. Plasmas for medicine[J]. Physics Report, 2013, 530: 291-320. [10] Portrait(R) plasma receives clearance from the FDA to treat acne scars, http://www.medicalnewstoday.com/ articles/102627.php. [11] Terraplasma medical gets CE mark approval for European market, https://www.space-of-innovation.com/category/news/. [12] 李和平, 于达仁, 孙文延, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. Li Heping, Yu Daren, Sun Wenyan, et al.State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. [13] 任富强, 汲胜昌, 祝令瑜, 等. 基于同轴直管和倒置锥形管的氩大气压等离子体射流放电形态的实验和仿真[J] 电工技术学报, 2017, 32(8): 95-102. Ren Fuqiang, Ji Shengchang, Zhu Lingyu, et al.Experiment and simulation on the discharge modality of atmospheric pressure plasma jets in argon based on coaxial straight tube and inverted tapered tube[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 95-102. [14] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 30(20): 1-9. Dai Dong, Ni Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 30(20): 1-9. [15] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. Zhang Cheng, Shao Tao, Long Kaihua, et al.Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. [16] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al.Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [17] Nathan C, Ding A.Nonresolving inflammation[J]. Cell, 2010, 140(6):871-882. [18] Xu Dehui, Liu Dingxin, Wang Biqing, et al.In situ OH generation from O2- and H2O2 plays a critical role in plasma-induced cell death[J]. Plos One, 2015, 10(6): e0128205. [19] Ikawa S, Tani A, Nakashima Y, et al.Physicochemical properties of bactericidal plasma-treated water[J]. Journal of Physics D: Applied Physics, 2016, 49(42): 425401. [20] Dedon P C, Tannenbaum S R.Reactive nitrogen species in the chemical biology of inflammation[J]. Archives of Biochemistry and Biophysics, 2004, 423(1): 12-22. [21] Pacher P, Beckman J S, Liaudet L.Nitric oxide and peroxynitrite in health and disease[J]. Physiological Reviews, 2007, 87(1): 315-424. [22] 方允中, 郑荣梁, 沈文梅. 自由基生命科学进展[M]. 北京: 原子能出版社, 1994. [23] Ischiropoulos H.Biological tyrosine nitration: A pathophysiological function of nitric oxide and reactive oxygen species[J]. Archives of Biochemistry and Biophysics, 1998, 356(1): 1-11. [24] Liu Z C, Liu D X, Chen C, et al.Physicochemical processes in the indirect interaction between surface air plasma and deionized water[J]. Journal of Physics D: Applied Physics, 2015, 48(49): 495201. [25] Sakiyama Y, Graves D B, Chang H W, et al.Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species[J]. Journal of Physics D: Applied Physics, 2012, 45(42): 425201. [26] Sun Yi, Yu Shuang, Sun Peng, et al.Inactivation of candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs[J]. Plos One, 2012, 7(7): e40629. [27] Traylor M J, Pavlovich M J, Karim S, et al.Long-term antibacterial efficacy of air plasma activated water[J]. Journal of Physics D: Applied Physics, 2011, 44(47): 472001. [28] Halliwell B, Gutteridge J M C. Free radicals in biology and medicine[M]. New York: Oxford University Press, 2007. [29] Atkins P, Paula J D.Physical chemistry for the life sciences[M]. New York: Oxford University Press, 2006. [30] 彭崇慧, 冯建章, 张锡瑜. 定量化学分析简明教程[M]. 北京: 北京大学出版社, 1985. [31] Yue Y F, Mohades S, Laroussi M, et al.Measurements of plasma-generated hydroxyl and hydrogen peroxide concentrations for plasma medicine applications[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2754-2758. [32] 金朝晖. 环境检测[M]. 天津: 天津大学出版社, 2007. [33] Ninfa A J, David P B, Marilee B.Fundamental laboratory approaches for biochemistry and biotechnology[M]. Hoboken, NJ: John Wiley, 2009. [34] 赵保路. 电子自旋共振(ESR)技术在生物和医学中的应用[J]. 波谱学杂志, 2010, 27(1): 51-67. Zhao Baolu.Application of electron spin resonance (ESR) technology in biology and medicine[J]. Journal of Spectroscopy, 2010, 27(1): 51-67. [35] Fernandez M J F, Sato H. Solvent effect on (2,2,6,6-tetramethy lpiperidine-1-yl)oxyl (TEMPO): a RISM-SCF-SEDD study[J]. Theoretical Chemistry Account, 2011, 130(2-3): 299-304. [36] Swarzenski P W, Reich C, et al.Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida[J]. Marine Chemistry, 2007, 104(1-2): 69-84. [37] Marsh K L, Sims G K, Mulvaney R L.Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil[J]. Biology and Fertility of Soils, 2005, 42:137-145. [38] Schiorlin M, Marotta E, et al.Determination of atomic oxygen in atmospheric plasma from oxygen isotope exchange[J]. Plasma Process and Polym, 2011, 8(9): 859-866. [39] Gołkowski M, Gołkowski C, Leszczynski J, et al.Hydrogen peroxide enhanced nonthermal plasma effluent for biomedical applications[J]. IEEE Transactions on Plasma Science, 2012, 40(8): 1984-1991. [40] Sies H.Strategies of antioxidant defense[J]. European Journal of Biochemistry, 1993, 215(2): 213-219. [41] Yoo D H, Han S K, Lee M J, et al.J. Spin trapping EPR method for simultaneous monitoring of Hydroxyl radicals and Hydrogen atoms in γ-irradiation process[J]. Journal of Industrial and Engineering Chemistry, 2005, 11(2): 215-221. [42] Tresp H, Hammer M U, Winter J, et al.Quantitative detection of plasma-generated free radicals in liquids by electron paramagnetic resonance spectroscopy[J]. Journal of Physics D: Applied Physics, 2013, 46(43): 435401. [43] Teda M, Kohno M, Kasai S, et al.Generation mechanism of radical species by tyrosine-tyrosinase reaction[J]. Journal of Clinical Biochemistry and Nutrition, 2010, 47(2): 162-166. [44] Horikosh S, Wada Y, Watanabe N, et al.Near-quantitative mineralization of two refractory triazines under hydrothermal-supercritical aqueous conditions assisted by ozone and UV/ozone[J]. New Journal of Chemistry, 2003, 8: 1216-1223. [45] Gorbanev Y, Connell D O, Chechik V.Non-thermal plasma in contact with water: the origin of species[J]. Chemistry, 2016, 22(10): 3496-3505. [46] Tani A, Ono Y, Fukui S, et al.Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma[J]. Applied Physics Letters, 2012, 100(25): 254103. [47] Kamibayashi M, Oowada S, Kameda H, et al.Synthesis and characterization of a practically better DEPMPO-type spin trap, 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO)[J]. Free Radical Research, 2006, 40(11): 1166-1172. [48] Shiraki D, Ishibashi N, Takeuchi N.Quantitative estimation of OH radicals reacting in liquid using a chemical probe for plasma in contact with liquid[J]. IEEE Transactions on Plasma Science, 2016, 44(12): 3158-3163. [49] Li S, Timoshkin I V, Maclean M, et al.Fluorescence detection of hydroxyl radicals in water produced by atmospheric pulsed discharges[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2015, 22(4): 1856-1865. [50] Takeuchi N.Generation mechanism of hydrogen peroxide in DC plasma with a liquid electrode[J]. Plasma Sources Science and Technology, 2018, 27(4): 45010. [51] 任瑞妮, 付柯, 冯巩, 等. 分光光度法测定羟基自由基捕获剂的研究进展[J]. 安徽化工, 2014, 40(3): 19-21. Ren Ruini, Fu Ke, Feng Gong, et al.Research progress of spectrophotometric method to determine the hydroxyl free radical scavenger[J]. Anhui Chemical Industry, 2014, 40(3): 19-21. [52] Satoh A Y, Trosko J E, Masten S J.Methylene blue dyetest for rapid qualitative detection of hydroxyl radicals formed in a Fenton’s reaction aqueous solution[J]. Environmental Science & Technology, 2007, 41(8): 2881-2887. [53] 王金刚, 王西奎, 国伟林, 等. 亚甲蓝光度法测定羟自由基[J]. 理化检验-化学分册, 2007, 43(6): 495-497. Wang Jingang, Wang Xikui, Guo Weilin, et al.Photometric determination of hydroxyl free radical by its reaction with methylene blue[J]. Phgsical and Chemical Examination-Chemical Section, 2007, 43(6): 495-497. [54] Lee H W, Lee H W, Kang S K, et al.Synergistic sterilization effect of microwave-excited nonthermal Ar plasma, H2O2, H2O and TiO2, and a global modeling of the interactions[J]. Plasma Sources Science and Technology, 2013, 22(5): 055008. [55] Kishore K, Guha S N, Mahadevan J, et al.Redox reactions of methylene blue: a pulse radiolysis study[J]. International Journal of Radiation Applications and Instrumentation, Part C: Radiation Physics and Chemistry, 1989, 34(4): 721-727. [56] Chen Chen, Liu Dinxin, Yang Aijun, et al.Aqueous reactive oxygen species induced by He+O2 plasmas: chemistry pathways and dosage control approaches[J]. Plasma Chemistry and Plasma Processing, 2018, 38(1): 89-105. [57] Zhang Qian, Liang Yongdong, Feng Hongqing, et al.A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage[J]. Applied Physics Letters, 2013, 102: 203701. [58] Falagas M E, Thomaidis P C, Kotsantis I K, et al.Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review[J]. Journal of Hospital Infection, 2011, 78(3): 171-177. [59] Lukes P, Dolezalova E, Sisrova I, et al.Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2[J]. Plasma Sources Science and Technology, 2014, 23(1): 015019. [60] Oehmigen K, Winter J, Hahnel M, et al.Estimation of possible mechanisms of escherichia coli inactivation by plasma treated sodium chloride solution[J]. Plasma Processes and Polymers, 2011, 8(10): 904-913. [61] Jablonowski H, Hänsch M A C, Dünnbier M, et al. Plasma jet’s shielding gas impact on bacterial inactivation[J]. Biointerphases, 2015, 10(2): 29506. [62] 刘海英, 俎爱忠, 陈建保, 等. HRP-H2O2-OPDA化学发光酶联免疫分析检测马铃薯重花叶病毒[J]. 食品安全导刊, 2017, 09X: 149-150. Liu Haiying, Yan Aizhong, Chen Jianbao, et al.Detection of potato heavy mosaic virus by HRP-H2O2-OPDA chemiluminescence enzyme-linked immunosor-bent assay[J]. Food Safety Guide, 2017, 09X: 149-150. [63] Bystryak S M, Mekler V M.Photochemical amplification for horseradish peroxidase-mediated immunosorbent assay[J]. Analytical Biochemistry, 1992, 202(2): 390-393. [64] Szili E J, Bradley J W, Short R D.A ‘tissue model’ to study the plasma delivery of reactive oxygen species[J]. Journal of Physics D: Applied Physics, 2014, 47(15): 152002. [65] Nogueira R F P, Oliveira M C, Paterlini W C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate[J]. Talanta, 2005, 66(1): 86-91. [66] Vasko C A, Liu D X, Van Veldhuizen E M, et al. Hydrogen peroxide production in an atmospheric pressure RF glow discharge: comparison of models and experiments[J]. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1081-1099. [67] Liu Dingxin, Liu Z C, Chen C, et al.Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways[J]. Scientific Reports, 2016, 6: 23737. [68] Winter J, Ttesp H, Hammer H U, et al.Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells[J]. Journal of Physics D: Applied Physics, 2014, 47(28): 285401. [69] Saeki R, Yasuoka K.Generation of hydrogen peroxide in gas bubbles using pulsed plasma for advanced oxidation process[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3440-3444. [70] Takeuchi N, Ishii Y, Yasuoka K.Modelling chemical reactions in DC plasma inside oxygen bubbles in water[J]. Plasma Sources Science and Technology, 2012, 21(1): 015006. [71] Rumbach P, Go D B.Perspectives on plasmas in contact with liquids for chemical processing and materials synthesis[J]. Topics in Catalysis, 2017, 60(12-14), 799-811. [72] He Zhengguang, Liu Junshen, Cai Weimin.The important role of the hydroxy ion in phenol removal using pulsed corona discharge[J]. Journal of Electrostatics, 2005, 63(5): 371-386. [73] Grinevich V I.Kinetics of ozone formation in the gas and liquid phases in a barrier-discharge plasma[J]. Theoretical Foundations of Chemical Engineering, 2004, 38(1): 56-60. [74] Bader H, Hoigne J.Determination of ozone in water by the indigo method[J]. Water Research, 1981, 15(4): 449-456. [75] Pavlovich M J, Chang H W, Sakiyama Y, et al.Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water[J]. Journal of Physics D: Applied Physics, 2013, 46(14): 145202. [76] Leslie A K, Li D, Koide K.Amine-promoted β-elimination of a β-aryloxy aldehyde for fluorogenic chemodosimeters[J]. The Journal of Organic Chemistry, 2011, 76(16): 6860-6865. [77] Wright A, Fuster J, Shaw A, et al.Quantification of the ozone dose delivered into a liquid by indirect plasma treatments: method and calibration of the Pittsburgh Green fluorescence probe[J]. Plasma Chemistry and Plasma Processing, 2018, 38(6): 1169-1179. [78] Garner A L, St Croix C M, Pitt B R, et al. Specific fluorogenic probes for ozone in biological and atmospheric samples[J]. Nature Chemistry, 2009, 1(4): 316-321. [79] Beltrán C C, Palmer E A, Buckley B R, et al.Virtues and limitations of Pittsburgh green for ozone detection[J]. Chemical Communications, 2015, 51(9): 1579-1582. [80] Xu Kehua, Sun Shuxia, Li Jing, et al.A near-infrared fluorescent probe for monitoring ozone and imaging in living cells[J]. Chemical Communication, 2012, 48: 684-686. [81] Xu Kehua, Wang Lulu, Qiang Mingming, et al.A selective near-infrared fluorescent probe for singlet oxygen in living cells[J]. Chemical Communication, 2011, 47: 7386-7388. [82] Wayne R P.Singlet molecular oxygen[M]. New York: John Wiley & Sons Inc., 1969. [83] Jablonowski H, Santos S J, Weltmann K D, et al.Quantification of the ozone and singlet delta oxygen produced in gas and liquid phases by a non-thermal atmospheric plasma with relevance for medical treatment[J]. Scientific Reports, 2018, 8(1): 12195. [84] Goldstein B D, Harber L C.Erythropoietic protoporphyria: lipid peroxidation and red cell membrane damage associated with photohemolysis[J]. The Journal of Clinical Investigation, 1972, 51: 892-902. [85] Sun Peng, Wu Haiyan, Bai Na, et al.Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet[J]. Plasma Processes and Polymers, 2012, 9(2): 157-164. [86] Wu Haiyan, Sun Peng, Feng Hongqing, et al.Reactive oxygen species in a non-thermal plasma microjet and water system: generation, conversion, and contributions to bacteria inactivation-an analysis by electron spin resonance spectroscopy[J]. Plasma Processes and Polymers, 2012, 9(4): 417-424. [87] Davies M J.Singlet oxygen-mediated damage to proteins and its consequences[J]. Biochemical and Biophysical Research Communications, 2003, 305(3): 761-770. [88] Aprile C, Martin R, Alvaro M, et al.Functional macromolecules from single-walled carbon nanotubes: synthesis and photophysical properties of short single—walled carbon nanotubes functionalized with 9,10-diphenylanthracene[J]. Chemistry—a European Journal, 2008, 14(16): 5030-5038. [89] Steinbeck M J, Khan A U, Karnovsky M J.Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap[J]. Journal of Biological Chemistry, 1992, 267: 13425-13433. [90] Steinbeck M J, Khan A U, Karnovsky M J.Extracellular production of singlet oxygen by stimulated macrophages quantified using 9,10-diphenylanthracene and perylene in a polystyrene film[J]. Journal of Biological Chemistry, 1993, 268: 15649-15654. [91] Racine P, Auffray B.Quenching of singlet molecular oxygen by commiphora myrrha extracts and menthofuran[J]. Fitoterapia, 2005, 76(3-4): 316-323. [92] Ohyashiki T, Nunomura M, et al.Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1999, 1421(1): 131-139. [93] Ragàs X, Jiménez-Banzo A, Sánchez-García D, et al.Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green®[J]. Chemical Communications, 2009, 20: 2920-2922. [94] Lopez C, Pons M N, Morgenroth E.Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal[J]. Water Research, 2006, 40(8): 1519-1530. [95] Hideg E.A comparative study of fluorescent singlet oxygen probes in plant leaves[J]. Central European Journal of Biology, 2008, 3: 273-284. [96] Hayyan M, Hashim M A, AlNashef I M. Superoxide ion: generation and chemical implications[J]. Chemical Reviews, 2016, 116(5): 3029-3085. [97] Ikawa S, Kitano K, Hamaguchi S.Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application[J]. Plasma Processes and Polymers, 2010, 7: 33-42. [98] Valko M, Leibfritz D, Moncol J, et al.Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84. [99] Dikalov S, Skatchkov M, Bassenge E.Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyrrolidine and 1-hydroxy-2,2,6, 6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants[J]. Biochemical and Biophysical Research Communication, 1997, 231(3): 701-704. [100] Chen Chen, Li Fanying, Chen Hailan, et al.Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study[J]. Journal of Physics D: Applied Physics, 2017, 50(44): 445208. [101] Maillard B, Ingold K U, Scaiano J C.Rate constants for the reactions of free radicals with oxygen in solution[J]. Journal of the American Chemical Society, 1983, 105(15): 5095-5099. [102] Tani A, Fukui S, Ikawa S, et al. Diagnosis of superoxide anion radical induced in liquids by atmospheric-pressure plasma using superoxide dismutase[J]. Japanese Journal of Applied Physics, 2015, 54(1S): 01AF01. [103] Tang Bo, Zhang Li, Geng Yu.Determination of the antioxidant capacity of different food natural products wim a new developed flow injection spetrofluorimetry detection hydroxyl radicals[J]. Talanta, 2005, 65(3); 769-775. [104] Tang Bo, Zhang Li, Hu Jixi, et al.Indirect determination of superoxide anion radical in the plant of red sage based on vanillin-8-aminoquinoline with fluorescence[J]. Analytical Chimica Acta, 2004, 502(1): 125-131. [105] Culotta E, Koshland D E, et al.NO news is good news[J]. Science, 1992, 258(5090): 1862-1864. [106] 陈晓霞, 易洪潮, 王颖, 等. 一氧化氮电化学传感器及其在生物医学中的应用[J]. 现代科学仪器, 2006, 16: 17-20. Chen Xiaoxia, Yi Hongchao, Wang Ying, et al.Nitric oxide electrochemical sensor and its application in biomedicine[J]. Modern Scientific Instruments, 2006, 16: 17-20. [107] Zhang Qian, Sun Peng, Feng Hongqing, et al.Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet[J]. Journal of Applied Physics, 2012, 111(12): 123305. [108] Mulsch A, Mordvintcev P, Vanin A.Quantification of nitric oxide in biological samples by electron spin resonance spectroscopy[J]. Neuroprotocols, 1992, 1(2): 165-173. [109] Andriambeloson E, Kleschyov A L, Muller B, et al.Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta[J]. Birtish Pharmacological Society, 1997, 120(6): 1053-1058. [110] Komarov A M, Lai C S.Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy[J]. Biochimica et Biophysica Acta, 1995, 1272: 29-36. [111] Komarov A, Mattson D, Jones M M, et al.In vivo spin trapping of nitric oxide mice[J]. Biochemical and Biophysical Research Communications, 1993, 195(3): 1191-1198. [112] Efrati S, Dishy V, Averbukh M, et al.The effect of N-acetylcysteine on renal function, nitric oxide, and oxidative stress after angiography[J]. Kidney International, 2003, 64(6): 2182-2187. [113] Wang D, Yu X, Cohen R A, et al.Distinct effects of N-acetylcysteine and nitric oxide on angiotensin II-induced epidermal growth factor receptor phosphorylation and intracellular Ca2+ levels[J]. Journal of Biological Chemistry, 2000, 275(16): 12223-12230. [114] Shen Jie, Zhang Hao, Xu Zimu, et al.Preferential production of reactive species and bactericidal efficacy of gas-liquid plasma discharge[J]. Chemical Engineering Journal, 2019, 362: 402-412. [115] Claros J, Jiménez E, Aguado D, et al.Effect of pH and HNO2 concentration on the activity of ammonia-oxidizing bacteria in a partial nitritation reactor[J]. Water Science and Technology, 2013, 67(11): 2587-2594. [116] 徐专红. 食物中的硝酸盐和亚硝酸盐与人体健康[J]. 食品科技, 1999(4): 53-55. Xu Zhuhong.Nitrate and nitrite in food and human health[J]. Food Science and Technology, 1999(4): 53-55. [117] Addiscott T M, Benjamin N.Nitrate and human health[J]. Soil Use and Management, 2004, 20(2): 98-104. [118] Green L C, Wagner D A, Glogowski J, et al.Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids[J]. Analytical Biochemistry, 1982, 126(1): 131-138. [119] 魏敬, 党文玲. 亚硝酸盐测定方法的比较与分析[J]. 肉类工业, 2004(7): 37-38. Wei Jing, Dang Wenling.Comparison and analysis of determination methods of nitrite[J]. Meat Industry, 2004(7): 37-38. [120] 赵萍. 流动注射分光光度法测定亚硝酸根氮[J]. 分析试验室, 2006, 25(10): 29-31. Zhao Ping.Determination of nitrite nitrogen by flow injection spectrophotometry[J]. Laboratory of Analysis, 2006, 25(10): 29-31 [121] von Woedtke T, Oehmigen K, Brandenburg R, et al. Plasma-liquid interactions: chemistry and antimicro-bial effects[J]. NATO Science for Peace and Security Series A-Chemistry and Biology, 2012, DOI: 10.1007/978-94-007-2852-3-6. [122] Oh J S, Szili E J, Ogawa K, et al. UV-vis spectroscopy study of plasma-activated water: dependence of the chemical composition on plasma exposure time and treatment distance[J]. Japanese Journal of Applied Physics, 2018, 57(1): 0102B9. [123] Oh J S, Szili E J, Gaur N, et al.How to assess the plasma delivery of RONS into tissue fluid and tissue[J]. Journal of Physics D: Applied Physics, 2016, 49(30): 304005. [124] Szili E J, Oh J S, Hong S H, et al.Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition[J]. Journal of Physics D: Applied Physics, 2015, 48(20): 202001. [125] Keiber R J, Seaton P J.Determination of subnanomolar concentrations of nitrite in natural waters[J]. Analytical Chemistry, 1995, 67(18): 3261-3264. [126] Machala Z, Tarabova B, Hensel K, et al.Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects[J]. Plasma Processes and Polymers, 2013, 10(7): 649-659. [127] 袁友明, 姚晶晶, 路磊, 等. 离子色谱法测定农田灌溉水中亚硝酸盐[J]. 湖北农业科学, 2009, 48(9): 2237-2239. Yuan Youming, Yao Jingjing, Lu Lei, et al.Determination of nitrite in farmland irrigation water by ion chromatography[J]. Hubei Agricultural Sciences, 2009, 48(9): 2237-2239. [128] Pacher P, Beckman J S, Liaudet L.Nitric oxide and peroxynitrite in health and disease[J]. Physiological Reviews, 2007, 87(1): 315-424. [129] Szabó C, Ischiropoulos H, Radi R.Peroxynitrite: biochemistry, pathophysiology and development of therapeutics[J]. Nature Reviews Drug Discovery, 2007, 6(8): 662-680. [130] Hempel S L, Buettner G R, O’Malley Y Q. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123[J]. Free Radical Biology and Medicine, 1999, 27(1-2): 146-159. [131] Kooy N W, Royall J A, Ischiropoulos H.Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite[J]. Free Radical Research, 1997, 27: 245-254. [132] Kooy N W, Royall J A, Ischiropoulos H, Beckman J S.Peroxynitrite-mediated oxidation of dihydrorhodamine 123[J]. Free Radical Biology Medicine, 1994, 16(2): 149-156. [133] Crow J P.Dichlorodihydrofluorescein and Dihydror-hodamine 123 are sensitive indicators of Peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species[J]. Nitric Oxide, 1997, 1(2): 145-157. [134] Zielonka J, Sikora A, Joseph J, Kalyanarama B.Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe[J]. Journal of Biological Chemistry, 2010, 285(19): 14210-14216. [135] Zielonka J, Zielonka M, Sikora A, et al.Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses[J]. Journal of Biological Chemistry, 2012, 287(5): 2984-2995. [136] Zielonka J, Sikora A, Hardy M, Joseph J, et al.Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides[J]. Chemical Research in Toxicology, 2012, 25(9): 1793-1799. [137] Zhou Renwu, Zhou Rusen, Prasad Karthika, et al.Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite[J]. Green Chemistry, 2018, 20: 5276. [138] Huang Junchao, Li Dejia, Diao Junchen, et al.A novel fluorescent method for determination of peroxynitrite using folic acid as a probe[J]. Talanta, 2007, 72: 1283-1287. [139] Cox R A, Derwent R G, Hutton A J L. Significance of peroxynitric acid inatmospheric chemistry of nitrogen oxides[J]. Nature, 1997, 270: 328-329. [140] Kenley R A, Trevor P L, Lan B Y.Preparation and thermal decomposition ofpernitric acid (HOONO2) in aqueous media[J]. Journal of the American Chemical Society, 1981, 103(9): 2203-2206. [141] Régimbal J M, Mozurkewich M.Peroxynitric acid decay mechanisms andkinetics at low pH[J]. The Journal of Physical Chemical A, 1997, 101: 8822-8829. [142] Gierczak T, Jiménez E, Riffault V, et al.Thermal decomposition of HO2NO2(peroxynitric acid, PNA): rate coefficient anddetermination of the enthalpy of formation[J]. The Journal of Physical Chemistry A, 2005, 109(4): 586-596. [143] Nakashima Y, Ikawa S, Tani A, et al.Ion-exchange chromatographic analysis of peroxynitric acid[J]. Journal of Chromatography A, 2016, 1431: 89-93. [144] Hidefumi Uchiyama, Zhao Qingli, Mariame Ali Hassan, et al.EPR-spin trapping and flow cytometric studies of free radicals generated using cold atmospheric argon plasma and X-ray irradiation in aqueous solutions and intracellular milieu[J]. Plos One, 2015, 10(8): 1-19. [145] Gorbanev Y, Stehling N, O’Connell D, et al. Reactions of nitroxide radicals in aqueous solutions exposed to non-thermal plasma: limitations of spin trapping of the plasma induced species[J]. Plasma Sources Science and Technology, 2016, 25(5): 055017. [146] Guo Qiong, QianSteven Y, Ronald P Mason, et al. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS[J]. Journal of the American Society for Mass Spectrometry, 2003, 14(8): 862-871. [147] Gorbanev Y, Verlackt C C W, Verlackt S, et al. Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet[J]. Physical Chemistry Chemical Physics, 2018, 20: 2797-2808. [148] Suga Y, Sekiguchi H. Epoxidation of carbon double bond using atmospheric non-equilibrium oxygen plasma[J]. Thin Solid Films, 2006, 506-507: 427-431. |
|
|
|