|
|
Compatibility between Gas and Solid Materials in Gas Insulated Equipment |
Li Han, Zheng Zheyu, Yuan Ruijun, Zhou Wenjun, Yu Jianhui |
School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China |
|
|
Abstract With the global warming and the limitation of greenhouse gas emissions, a variety of new environmental protection insulation gases are emerging to replace SF6. However, before the use of SF6-alternative gas in large scale, the compatibility between these gases and materials used in gas insulated transmission line (GIL) or gas insulated switchgear (GIS) must be investigated. This paper summarizes the research history and current situation of gas-solid material compatibility in gas insulated equipment. The problems still existing in the research of gas-solid material compatibility are discussed from three aspects: gas and metal material, rubber sealing material (elastomer) and solid insulating material (insulator). The test method is set up. Judgment index and next research assumption of gas-solid material compatibility are also put forward in this paper.
|
Received: 04 August 2019
|
|
|
|
|
[1] Wilhelm H M, Franch V, Tulio L, et al.Compatibility of transformer construction materials with natural ester-based insulating fluids[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(5): 2703-2708. [2] 邱武斌, 杨涛, 王吉, 等. 天然酯绝缘油与油浸式变压器绝缘材料相容性研究[J]. 变压器, 2016, 53(3): 26-29. Qiu Wubin, Yang Tao, Wang Ji, et al.Research on compatibility between natural esters insulating oil and insulating material in oil-immersed transformer[J]. Transformer, 2016, 53(3): 26-29. [3] 袁洪亮. 油纸绝缘互感器用绝缘胶带相容性试验研究[J]. 电力电容器与无功补偿, 2015, 36(4): 76-79. Yuan Hongliang.Study on compatibility of insulation tape for oil-paper instrument transformer[J]. Power Capacitor & Reactive Power Compensation, 2015, 36(4): 76-79. [4] 陈丽波. 防晕材料与变压器油的相容性[J]. 变压器, 2000, 37(7): 11-13. Chen Libo.Compatibility of anti-corona material with transformer oil[J]. Transformer, 2000, 37(7):11-13. [5] 陈益川, 魏凤文. 绝缘材料相容性试验方法介绍[J]. 绝缘材料, 1984(1): 38-42. Chen Yichuan, Wei Fengwen.Introduction of compatibility test method for insulating materials[J]. Insulating Materials, 1984(1): 38-42. [6] Галущко А И, 万生发, 李维宪. 评价匝间绝缘相容性和可靠性的加速试验方法[J]. 绝缘材料, 1981(6): 60-67. Галущко А И, Wan Shengfa, Li Weixian. Accelerated test method for evaluating interturn insulation compatibility and reliability[J]. Insulating Materials, 1981(6): 60-67. [7] 葛正言. 国外电机绝缘材料组合相容性试验研究概述[J]. 电机技术, 1980(2): 23-26. Ge Zhengyan.Overview of the combination compatibility test of electrical insulation material abroad[J]. Electrical Machinery Technology, 1980(2): 23-26. [8] 许蕾. 国外推进剂与材料相容性试验方法标准概况[J]. 化学推进剂与高分子材料, 2016, 14(3): 25-29. Xu Lei.General situation on standards for test methods of compatibility between propellant and material abroad[J]. Chemical Propellants & Polymeric Materials, 2016, 14(3): 25-29. [9] 韩智云, 邹亮, 辛喆等. 直流GIL绝缘子环氧树脂/碳纳米管复合涂层关键物理性能的分子动力学模拟[J]. 电工技术学报, 2018, 33(20): 4692-4721. Han Zhiyun, Zou Liang, Xin Zhe, et al.Molecular dynamics simulation of vital physical properties of epoxy/carbon nanotube composite coatings on DC GIL insulators[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4692-4721. [10] 梁小伟, 詹冲, 徐乐. 空调系统中材料的相容性试验方法分析[J]. 上海电气技术, 2011, 4(1): 21-24. Liang Xiaowei, Zhan Chong, Xu Le.Analysis on the method to test the materials compatibility in Air-conditioning[J]. Journal of Shanghai Electric Technology, 2011, 4(1): 21-24. [11] Forster P, Ramaswamy V, Artaxo P, et al.Changes in atmospheric constituents and in radiative forcing in climate change 2007: the physical science basis[R]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. [12] 林林, 陈庆国, 程嵩, 等. 基于密度泛函基于密度泛函理论的SF6潜在可替代性气体介电性能分析[J]. 电工技术学报, 2018, 33(18): 4382-4388. Lin Lin, Chen Qingguo, Cheng Song, et al.The analysis of SF6 potential alternative gas dielectric strength based on density functional theory[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4382-4388. [13] 周文俊, 郑宇, 高克利, 等.环保型绝缘气体电气特性研究进展[J].高电压技术, 2018, 44(10): 3114-3124. Zhou Wenjun, Zheng Yu, Gao Keli, et al.Progress in re-searching electrical characteristics of environment-friendly insulating gases[J]. High Voltage Engineering, 2018, 44(10): 3114-3124. [14] 李康, 郭润睿, 张国强. 一种SF6替代气体—氟碳气体的故障分解气体产生规律及基于分解物气体的故障判据研究[J].电工技术学报, 2019, 34(12): 2649-2656. Li Kang, Guo Runrui, Zhang Guoqiang.Study on fault decomposition properties and fault diagnostic criterion of fluorocarbon gas a substitute gas for SF6[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2649-2656. [15] 王凌志, 周文俊, 张天然, 等.C4F7N/CO2混合气体在均匀和极不均匀电场下的工频绝缘性能[J].高电压技术, 2019, 45(4): 1101-1107. Wang Lingzhi, Zhou Wenjun, Zhang Tianran, et al.Power frequency insulation experiments of C4F7N/CO2 mixture under uniform and extremely non-uniform electric field[J]. High Voltage Engineering, 2019, 45(4): 1101-1107. [16] EPRI EL—2620 Gases superior to SF6 for insulation and interruption[R]. California,PRI EL—2620 Gases superior to SF6 for insulation and interruption[R]. California, USA: Electric Power Research Institute, 1982. [17] Pohlin K, Kieffel Y, Owens J.Characteristics of fluoronitrile/CO2 mixture-an alternative to SF6[C]// Conference International Des Grands Reseaux Electriques, Paris, France, 2016: D1-204. [18] Prévé C, Piccoz D, Maladen R.Validation methods of SF6 alternative gas[C]// Conference International Des Grands Reseaux Electriques, Paris, France, 2016: 0493. [19] Nechmi H E, Beroual A, Girodet A, et al.Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 23(5): 2587-2593. [20] Kieffel Y.Characteristics of g3 - an alternative to SF6[C]//2016 IEEE International Conference on Dielectrics, Montpellier, France, 2017, DOI: 11.1109/ ICD.2016.7547757. [21] Kieffel Y, Irwin T, Ponchon P, et al.Green gas to replace SF6 in electrical grids[J]. IEEE Power & Energy Magazine, 2016, 14(2): 32-39. [22] Zhang Xiaoxing, Li Yi, Chen Dachang, et al.Dissociative adsorption of environment-friendly insulating medium C3F7CN on Cu(111) and Al(111) surface: a theoretical evaluation[J]. Applied Surface Science, 2018(434): 549-560. [23] Li Yi, Zhang Xiaoxing, Xiao Song, et al.Insight into the compatibility between C4F7N and silver: Experiment and theory[J]. Journal of Physics and Chemistry of Solids, 2019(126): 105-111. [24] Li Yi, Zhang Xiaoxing, Chen Qi, et al.Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum[J]. Corrosion Science, 2019(153): 32-46 [25] Li Yi, Zhang Xiaoxing, Zhang Ji, et al.Thermal compatibility between fluorinated nitrile-carbon dioxide gas mixture and copper, aluminum using in gas insulated switchgear[J]. IEEE Access, 2019(7): 19792-19800. [26] Li Yi, Zhang Xiaoxing, Xiao Song, et al.Insights into the interaction between C4F7N decomposition products and Cu (111), Ag (111) surface[J]. Journal of Fluorine Chemistry, 2018(213): 24-30. [27] 郑哲宇, 李涵, 周文俊, 等. 环保绝缘气体C3F7CN与密封材料三元乙丙橡胶的相容性研究[J/OL]. 高电压技术, https//doi.org/10.13336/j.1003-6520.hve. 20190513015. Zheng Zheyu, Li Han, Zhou Wenjun, et al. Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM[J/OL]. High Voltage Engineering, https//doi.org/10.13336/j.1003-6520.hve.20190513015. [28] ISO 11114—1:2012 Gas cylinders-Compatibility of cylinder and valve materials with gas contents Part 1: Metallic materials. [29] 李晓华, 俞槐根, 刘文成. HFC—134a和润滑油与冰箱结构材料的相容性研究[J]. 有机氟工业, 1995(1): 3-7. Li Xiaohua, Yu Huaigen, Liu Wencheng.Compatibility of HFC-134a and lubricating oil with refrigerator structural materials[J]. Organo-Fluorine Industry, 1995(1): 3-7. [30] 史琳, 韩礼钟, 朱明善, 等. HFC-134a/油的材料相容性研究[J]. 制冷学报, 1999(1): 1-7. Shi Lin, Han Lizhong, Zhu Mingshan, et al.Study on materials compatibility of HFC-134a/lubricant[J]. Journal of Refrigeration, 1999(1): 1-7. [31] 周海敏, 史琳, 赵晓宇, 等. 三种制冷替代物的材料相容性研究[J]. 制冷与空调, 1997(3): 47-53. Zhou Haimin, Shi Lin, Zhao Xiaoyu, et al.Study on material compatibility of three refrigeration substitutes[J]. Refrigeration and Air-Conditioning, 1997(3): 47-53. [32] 许哲真, 李鹏, 袁晓蓉, 等. 替代制冷剂/油与材料相容性研究进展[J]. 制冷与空调, 2012, 12(4): 58-70. Xu Zhezhen, Li Peng, Yuan Xiaorong, et al.Research progress of the compatibility between alternative refrigerant/oil and materials[J]. Refrigeration and Air-Conditioning, 2012, 12(4): 58-70. [33] 许哲真. R161/油与制冷系统常用塑料、橡胶相容性实验研究[D]. 杭州: 浙江大学, 2012. [34] ISO 11114-2: 2013 Gas cylinders -- Compatibility of cylinder and valve materials with gas contents -- Part 2: Non-metallic materials[S]. 2013. [35] 张旭, 倪雪华, 姜克娟. 航空润滑油与橡胶相容性测试方法研究[C]// 2015航空试验测试技术学术交流会, 2015. [36] 史艳梅, 邢彬, 马羽飞, 等. 一种耐高温润滑油与橡胶的相容性考察[J]. 橡塑技术与装备, 2016(18): 52-54. Shi Yanmei, Xing Bin, Ma Yufei, et al.Study on compatibility of a high temperature lubricating oil and rubber[J]. China Rubber/Plastics Technology and Equipment, 2016(18): 52-54. [37] Stuckless H A, Braun J M, Chu F Y .Degradation of silica-filled epoxy spacers by ARC contaminated gases in SF6-insulated equipment[J]. IEEE Transactions on Power Apparatus and Systems, 1986, 104(12): 3597-3602. [38] Braun J M, Chu F Y, Seethapathy R. Characterization of GIS spacers exposed to SF6 decomposition products[J]. IEEE Transactions on Electrical Insulation, 1987, EI-22(2): 187-193. [39] 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211. Tang Nian, Qiao Shengya, Li Li, et al.Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211. [40] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ:电荷调控及抑制策略[J].电工技术学报, [J].电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. |
|
|
|