|
|
Anti-Icing Method of Using Expanded Diameter Conductor to Replace Bundle Conductor |
Bi Conglai, Jiang Xingliang, Han Xingbo, Yang Zhongyi, Ren Xiaodong |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China |
|
|
Abstract Icing of transmission line threatens the reliability of electric power system seriously. In recent years, although numerous anti-icing and de-icing methods were developed, this problem has not been totally solved in micro-meteorological and micro-topographic areas, due to the limitations of the proposed methods. Compared with aluminum conductor steel reinforced, the expanded diameter conductor, corresponds to a better anti-icing effect under the same transmission capacity. Therefore, this paper presented an anti-icing method by using expanded diameter conductor instead of bundle conductor. In this paper, the electrical factors were considered, the critical corona initiation voltage and surface electric field distribution characteristics of the expanded diameter conductor were analyzed. The results show that, the critical corona initiation voltage is lower than the operating voltage. The surface electric field of expanded diameter conductor is lower than that of the bundle conductor. Natural icing test results indicate that, the method of using expanded diameter conductor which has the same effective conductive area to replace bundle conductor can reduce the amount of icing quality by about 30%~80%. It can improve the anti-icing effect significantly, so as to achieve the purpose of anti-icing and mitigation without artificial intervention.
|
Received: 06 May 2019
|
|
|
|
|
[1] Farzaneh Masoud.Atmospheric icing of power networks[M]. Netherlands: Springer, 2008. [2] 蒋兴良, 舒立春, 孙才新. 电力系统污秽与覆冰绝缘[M]. 北京: 中国电力出版社, 2009. [3] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2002. [4] 胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(2):215-219. Hu Yi.Analysis and countermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(2):215-219. [5] 蒋兴良, 张志劲, 胡琴, 等. 再次面临电网冰雪灾害的反思与思考[J]. 高电压技术, 2018, 44(2): 463-469. Jiang Xingliang, Zhang Zhijin, Hu Qin, et al.Thinkings on the restrike of ice and snow disaster to the power grid[J]. High Voltage Engineering, 2018, 44(2): 463-469. [6] Zhao Jinlong, Guo Rui, Cao Lei, et al.Improvement of LineROVer: a mobile robot for de-icing of transmission lines[C]//The 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 2010, DOI: 10.1109/CARPI.2010. 5624458. [7] Zhang Guixin, Chen Sheng, Xu Shuguang, et al.Application and research of laser de-icing in power system[C]//Proceedings of the 2010 IEEE International PowerModulator and High Voltage Conference, Atlanta, GA, USA, 2010:470-473. [8] 蒋兴良, 范松海, 孙才新, 等. 低居里点铁磁材料在输电线路防冰中应用前景分析[J]. 南方电网技术, 2008, 2(2):19-22. Jiang Xingliang, Fan Songhai, Sun Caixin, et al.Analysis on application of the magnetic material of low curie point to deicing of transmission lines[J]. Southern Power System Technology, 2008, 2(2): 19-22. [9] 李剑, 王湘雯, 黄正勇, 等. 超疏水绝缘涂层制备与防冰、防污研究现状[J]. 电工技术学报, 2017, 32(16): 61-75. Li Jian, Wang Xiangwen, Huang Zhengyong, et al.Research of preparation, anti-icing and anti-pollution of super hydrophobic insulation coatings[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 61-75. [10] Jiang Xingliang, Fan Songhai, Zhang Zhijing, et al.Simulation and experimental investigation of DC ice-melting process on an iced conductor[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 919-929. [11] 舒立春, 罗保松, 蒋兴良, 等. 智能循环电流融冰方法及其临界融冰电流研究[J]. 电工技术学报, 2012, 27(10):26-34. Shu Lichun, Luo Baosong, Jiang Xinglaing, et al.Intelligent cycled current ice melting method and its critical ice-melting current study[J]. Transactions of China Electrotechnical Society; 2012, 27(10): 26-34. [12] Jiang Xingliang, Wang Yaoxuan, Shu Lichun, et al.Control scheme of the de-icing method by the transferred current of bundled conductors and its key parameters[J]. IET Generation, Transmission & Distribution, 2015, 9(15): 2198-2205. [13] 万建成. 架空导线应用技术[M]. 北京: 中国电力出版社, 2015. [14] 刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005. [15] 万建成, 刘臻, 孙宝东, 等. 扩径导线的分类与扩径方式的选择[J]. 电力建设, 2010, 31(6): 113-118. Wan Jiancheng, Liu Zhen, Sun Baodong, et al.Classification and applicability of diameter-expanded conductor[J]. Electric Power Construction, 2010, 31(6): 113-118. [16] 陈珩. 电力系统稳态分析[M]. 3版. 北京: 中国电力出版社, 2007. [17] 于永源, 杨倚雯. 关于电晕临界电压计算公式的探讨[J]. 长沙水电师院学报: 自然科学版, 1987(2): 83-90. Yu Yongyuan, Yang Yiwen.Discussion on the formula for calculating corona critical voltage[J]. Journal of Changsha Hydropower Teachers College: Natural Science Edition, 1987(2): 83-90. [18] 蒋兴良, 潘杨, 汪泉霖, 等. 基于等效直径的复合绝缘子覆冰特性与结构参数分析[J]. 电工技术学报, 2017, 32(7): 190-196. Jiang Xingliang, Pan Yang, Wang Quanlin, et al.Research on icing characteristics of composite insulator and structural parameter analysis based on equivalent diameter[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 190-196. [19] 张志劲, 张翼, 蒋兴良, 等. 基于标准旋转导体等效碰撞系数的绝缘子覆冰表征[J]. 电工技术学报, 2018, 33(21): 223-231. Zhang Zhijing, Zhang Yi, Jiang Xingliang, et al.Icing. characterization of insulator based on the equivalent collision coefficient of standard rotating conductors[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 223-231. [20] 韩兴波, 蒋兴良, 毕聪来, 等. 基于分散型旋转圆导体的覆冰参数预测[J]. 电工技术学报, 2019, 34(5): 1096-1105. Han Xingbo, Jiang Xingliang, Bi Conglai, et al.Prediction of icing environment parameters based on decentralized rotating conductors[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1096-1105. |
|
|
|