|
|
A High Speed Protection Scheme for Outgoing Line Fault of HVAC Transmission Lines Based on Low Frequency Components |
Chen Yu, Wen Minghao, Wang Zhen, Yin Xianggen, Yang Lin |
State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract To increase the operation speed of relays under the outgoing line fault conditions, this paper proposed a high-speed operation strategy based on the low-frequency transient component. The proposed method consists of two parts: the high-speed directional element and the fast outgoing line fault detection element. The measurement voltage drop and calculation voltage drop on the system equivalent impedance from relay location to backside equivalent power sources are introduced to detect the fault direction. By comparing the integration of the absolute values of residual voltage and setting voltage during a short time after the fault, the outgoing fault can be detected rapidly. The main advantage of the proposed method is its high reliability, because this method would not be affected by the high-frequency component. To overcome the impact of the capacitor voltage transformer transient characteristics on the outgoing line fault detection element, an effective method based on equal transfer processes is also presented. Finally, an extensive performance evaluation using PSCAD/EMTDC simulation corroborates the effectiveness of the proposed method. Simulation results show that the proposed method has the high operation speed under the outgoing line fault conditions.
|
Received: 25 April 2019
|
|
|
|
|
[1] 索南加乐, 刘文涛, 陈勇, 等. 基于R-L模型误差的自适应距离保护[J]. 电力系统自动化, 2006, 30(22): 66-72. Suonan Jiale, Liu Wentao, Chen Yong, et al.Adaptive distance protection based on R-L model error[J]. Automation of Electric Power Systems, 2006, 30(22): 66-72. [2] 张艳霞, K K Li.基于微分方程的自适应窗长距离保护算法研究[J]. 中国电机工程学报, 2000, 20(7): 25-28. Zhang Yanxia, Li K K.Study of adaptive window length algorithm based on linear differential equation[J]. Proceedings of the CSEE, 2000, 20(7): 25-28. [3] 陈学伟, 高厚磊, 向珉江, 等. 基于电子式互感器微分输出的改进R-L模型距离保护算法[J]. 电工技术学报, 2014, 29(6): 283-289. Chen Xuewei, Gao Houlei, Xiang Minjiang, et al.Improved R-L model distance protection algorithm based on differential output of electronic transducers[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 283-289. [4] 刘兴茂. 基于时频分析的超高压输电线路快速保护原理研究[D]. 成都: 西南交通大学, 2014. [5] 文明浩, 陈德树, 尹项根. 超高压线路等传变快速距离保护[J]. 中国电机工程学报, 2012, 32(4): 145-150. Wen Minghao, Chen Deshu, Yin Xianggen.Fast distance protection of EHV transmission lines based on equal transfer processes[J]. Proceedings of the CSEE, 2012, 32(4): 145-150. [6] 北京四方继保自动化股份有限公司. CSC-103A-G数字式超高压线路保护装置说明书[Z]. 2013. [7] 董新洲, 罗澎忻, 施慎行, 等. 基于极化电流行波方向继电器的行波方向比较式纵联保护技术及其在750kV线路上的应用[J]. 电力自动化设备, 2015, 35(9): 1-5. Dong Xinzhou, Luo Shuxin, Shi Shenxing, et al.PCTDR-based directional comparison pilot protection technology and its application in 750kV transmission lines[J]. Electric Power Automation Equipment, 2015, 35(9): 1-5. [8] 段建东, 张保会, 周艺. 超高速暂态方向继电器的研究[J]. 中国电机工程学报, 2005, 25(4): 7-12. Duan Jiandong, Zhang Baohui, Zhou Yi.Study of ultra-high-speed transient-based directional relay[J]. Proceedings of the CSEE, 2005, 25(4): 7-12. [9] 邹贵彬, 高厚磊, 江世芳, 等. 新型暂态行波幅值比较式超高速方向保护[J]. 中国电机工程学报, 2009, 29(7): 84-90. Zou Guibin, Gao Houlei, Jiang Shifang, et al.Novel transient travelling wave based amplitude comparison ultra high speed directional protection[J]. Proceedings of the CSEE, 2009, 29(7): 84-90. [10] Dong Xinzhou, Ge Yaozhong, He Jiali.Surge impedance relay[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1247-1256. [11] 薄志谦. 新一代电力系统继电保护——暂态保护[J]. 电网技术, 1996, 20(3): 34-40. Bo Zhiqian.Transient based protection-a new generation of power system protection[J]. Power System Technology, 1996, 20(3): 34-40. [12] 邓丰, 李欣然, 曾祥君. 基于全波形信息的混联线路单端行波定位方法[J]. 电工技术学报, 2018, 33(15): 61-75. Deng Feng, Li Xinran, Zeng Xiangjun.Single-ended traveling-wave-based fault location algorithm for hybrid transmission line based on the full-waveform[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 61-75. [13] 张希鹏, 邰能灵, 郑晓冬, 等. 基于WEMTR的柔性直流输电线路故障测距[J]. 电工技术学报, 2019, 34(3): 589-598. Zhang Xipeng, Tai Nengling, Zheng Xiaodong, et al.Fault location in VSC-HVDC transmission lines based on WEMTR[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 589-598. [14] 何奔腾, 金华烽, 李菊. 能量方向保护原理和特性研究[J]. 中国电机工程学报, 1997, 17(3): 166-170. He Benteng, Jin Huafeng, Li Ju.Principle and property research of the energy directional protection[J]. Proceedings of the CSEE, 1997, 17(3): 166-170. [15] 王寅, 潘佩芳, 孔凡坊, 等. 基于递归中值滤波的暂态能量方向元件仿真分析[J]. 电力系统保护与控制, 2010, 38(7): 29-31. Wang Yin, Pan Peifang, Kong Fanfang, et al.Simulation analysis of transient energy directional element based on recursive median filter[J]. Power System Protection and Control, 2010, 38(7): 29-31. [16] 郭振威, 姚建刚, 康童, 等. 一种输电线路超高速方向保护方法[J]. 电工技术学报, 2016, 31(22): 168-177. Guo Zhenwei, Yao Jiangang, Kang Tong, et al.A method for directional ultra-high-speed protection of transmission lines[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 168-177. [17] 沈国荣. 工频变化量方向继电器原理的研究[J]. 电力系统自动化, 1983, 7(1): 28-38. Shen Guorong.A new directional relay based on the variation of power frequency component[J]. Automation of Electric Power Systems, 1983, 7(1): 28-38. [18] 裘愉涛, 陈水耀, 杨恢宏, 等. 交直流混联系统突变量方向元件适用性研究[J]. 电力系统保护与控制, 2012, 40(13): 115-120. Qiu Yutao, Chen Shuiyao, Yang Huihong, et al.Research on applicability of directional element based on the power-frequency variation in AC-DC hybrid system[J]. Power System Protection and Control, 2012, 40(13): 115-120. [19] 徐妍, 陆广香, 徐晓敏, 等. 关于工频变化量距离保护可靠性的研究[J]. 电力系统保护与控制, 2015, 43(20): 51-57. Xu Yan, Lu Guangxiang, Xu Xiaomin, et al.Research on the reliability of the distance protection using power frequency variable components[J]. Power System Protection and Control, 2015, 43(20): 51-57. [20] 金能, 邢家维, 林湘宁, 等. 一种抗电流互感器饱和的工频变化量保护新方案[J]. 电工技术学报, 2018, 33(增刊1): 217-224. Jin Neng, Xing Jiawei, Lin Xiangning, et al.A new scheme of frequency variation protection resisting current transformer saturation[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 217-224. [21] 索南加乐, 王向兵, 孟祥来, 等. 基于R-L模型的参数识别快速方向元件[J]. 西安交通大学学报, 2006, 40(6):689-693. Suonan Jiale, Wang Xiangbing, Meng Xianglai, et al.Quick directional element based on R-L model parameter identification[J]. Journal of Xi’an Jiaotong University, 2006, 40(6): 689-693. [22] 康小宁, 杜岩平, 索南加乐, 等. 基于模型误差的自适应方向元件[J]. 电力自动化设备, 2009, 29(5): 43-47. Kang Xiaoning, Du Yanping, Suonan Jiale, et al.Adaptive directional element based on model error[J]. Electric Power Automation Equipment, 2009, 29(5): 43-47. [23] 李小鹏, 林圣, 何正友, 等. 基于工频量极性比较的高压输电线路超高速方向元件[J]. 中国电机工程学报, 2014, 34(31): 5685-5692. Li Xiaopeng, Lin Sheng, He Zhengyou, et al.Ultra high speed directional elements based on polarity comparison of power frequency components for high voltage transmission lines[J]. Proceedings of the CSEE, 2014, 34(31): 5685-5692. [24] 李小鹏, 杨健维, 何正友, 等. 一种新型电流极性比较式方向元件[J]. 中国电机工程学报, 2015, 35(6): 1399-1405. Li Xiaopeng, Yang Jianwein, He Zhengyou, et al.A novel directional element based on current polarity comparison[J]. Proceedings of the CSEE, 2015, 35(6): 1399-1405. [25] 古斌, 谭建成. 基于瞬时功率理论的新型功率方向元件[J]. 电工技术学报, 2010, 25(2): 177-182. Gu Bin, Tan Jiancheng.A study of the novel power direction relay based on the instantaneous power theory[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 177-182. [26] 古斌, 谭建成, 韦化, 等. 滤除高频暂态量的突变量高速方向保护[J]. 中国电机工程学报, 2014, 34(28): 4932-4940. Gu Bin, Tan Jiancheng, Wei Hua, et al.A high speed directional protection scheme based on fault components with high-frequency transient quantities filtered out[J]. Proceedings of the CSEE, 2014, 34(28): 4932-4940. |
|
|
|