|
|
Optimal Design of Flux-Switching Permanent Magnet Linear Machine Based on Improved Surrogate-Based Optimization Algorithm |
Zhang Bangfu, Cheng Ming, Wang Sasa, Wang Wei |
School of Electrical Engineering Southeast University Nanjing 210096 China |
|
|
Abstract Global optimization of motor based on finite element method and modern metaheuristic optimization algorithm is computationally expensive. The surrogate-based optimization (SBO) algorithm is an effective method for expensive optimization. SBO algorithm uses infill criterion to balance local exploitation and global exploration, which will lead to global optimal result. An improved SBO algorithm is proposed in this paper, in which new infill criterion is adopted. The parallel computing is also applied to reduce optimization cycles further. Numerical experiments on test functions validate the effectiveness of the proposed SBO algorithm. A flux-switching permanent magnet linear machine is optimized with the proposed algorithm. A prototype is also used to validate the effectiveness of the simulation and algorithm.
|
Received: 16 March 2019
Published: 12 March 2020
|
|
|
|
|
[1] Hendershot J R, Miller T J E. Design of brushless permanent-magnet machines[M]. New York: Magna Physics Publishing & Oxford University Press, 2010. [2] Cheng M, Chau K T, Chan C C, et al.Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors[J]. IEEE Transactions on Magnetics, 2000, 36(1): 339-348. [3] Zhu Z Q, Wu L J, Xia Z P.An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines[J]. IEEE Transactions on Magnetics, 2010, 46(4): 1100-1115. [4] Bramerdorfer G, Zăvoianu A, Silber S, et al.Possibilities for speeding up the FE-based optimization of electrical machines-a case study[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 4668-4677. [5] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. Bao Xiaohua, Liu Jiwei, Sun Yue, et al.Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [6] 刘细平, 李亚, 刘章麒, 等. 机械调磁式轴向永磁同步电机调磁特性分析与试验研究[J]. 电工技术学报, 2018, 33(5): 989-997. Liu Xiping, Li Ya, Liu Zhangqi, et al.Analysis and experimental investigation on flux-adjusting characteristic for a mechanical flux-adjusting axial PM synchronous machine[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 989-997. [7] 孙强, 张为堂, 花为. 一种车用双极性横向磁通永磁电动机[J]. 电机与控制学报, 2018, 22(8): 41-46. Sun Qiang, Zhang Weitang, Hua Wei.Magnetic field of vehicle bipolar transverse-flux permanent magnet motor[J]. Electric Machines and Control, 2018, 22(8): 41-46. [8] Bramerdorfer G, Tapia J A, Pyrhönen J J, et al.Modern electrical machine design optimization: techniques, trends, and best practices[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 7672-7684. [9] 鲁裕婷, 赵天乐, 都洪基, 等. 基于改进粒子群算法的含DG配电网无功优化[J]. 电力工程技术, 2018, 37(6): 69-74. Lu Yuting, Zhao Tianle, Du Hongji, et al.Reactive power optimization of distribution network with distributed generation based on improved particle swarm optimization algorithm[J]. Electric Power Engineering Technology, 2018, 37(6): 69-74. [10] 刘国海, 王艳阳, 陈前. 非对称V型内置式永磁同步电机的多目标优化设计[J].电工技术学报, 2018, 33(增刊2): 385-393. Liu Guohai, Wang Yanyang, Chen Qian.Multi-objective optimization of an asymmetric V-shaped interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 385-393. [11] Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45: 50-79. [12] Zhang Bangfu, Cheng Ming, Cao Ruiwu, et al.Analysis of linear flux-switching permanent magnet motor using response surface methodology[J]. IEEE Transactions on Magnetics, 2014, 50(11): 8103004. [13] Taran N, Ionel D M, Dorrell D G.Two-level surrogate-assisted differential evolution multi-objective optimization of electric machines using 3-D FEA[J]. IEEE Transactions on Magnetics, 2018, 54(11): 8107605. [14] Jouhaud J C, Sagaut P, Montagnac M, et al.A surrogate-model based multidisciplinary shape optimization method with application to a 2D subsonic airfoil[J]. Computers & Fluids, 2007, 36(3): 520-529. [15] Wang G Gary, Shan S.Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(2): 370-380. [16] Jones D R, Schonlau M, Welch W J.Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13: 455-492. [17] Sóbester A, Leary S J, Keane A J.A parallel updating scheme for approximating and optimizing high fidelity computer simulations[J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 371-383. [18] Zhan Dawei, Qian Jiachang, Cheng Yuansheng.Balancing global and local search in parallel efficient global optimization algorithms[J]. Journal of Global Optimization, 2017, 67(4): 873-892. [19] Sobester A, Leary S J, Keane A J.On the design of optimization strategies based on global response surface approximation model[J]. Journal of Global Optimization, 2005, 33(1): 31-59. [20] Feng Zhiwei, Zhang Qingbin, Zhang Qingfu, et al.A multi-objective optimization based framework to balance the global exploration and local exploitation in expensive optimization[J]. Journal of Global Optimization, 2015, 61(4): 677-694. [21] 李伟, 程明. 磁通切换电机的马尔科夫可靠性模型分析[J]. 电工技术学报, 2018, 33(19): 4535-4543. Li Wei, Cheng Ming.Markov reliability model analysis for flux-switching permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4535-4543. [22] 曹瑞武, 程明, 花为, 等. 磁路互补型模块化磁通切换永磁直线电机[J]. 中国电机工程学报, 2011, 31(6): 58-65. Cao Ruiwu, Cheng Ming, Hua Wei, et al.Novel modularized flux switching permanent magnet linear machine with complementary magnetic circuits[J]. Proceedings of the CSEE, 2011, 31(6): 58-65. [23] 黄磊, 胡敏强, 余海涛, 等. 双边长初级磁通切换永磁直线电机推力波动分析及抑制[J]. 电工技术学报, 2014, 29(11): 11-19. Huang Lei, Hu Minqiang, Yu Haitao, et al.Analysis and suppression of the thrust ripple in a double-sided long primary flux-switching permanent magnet linear motor[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 11-19. [24] 孔龙涛, 程明, 张邦富. 基于模型参考自适应系统的模块化磁通切换永磁直线电机无位置传感器控制[J]. 电工技术学报, 2016, 31(17): 132-139. Kong Longtao, Cheng Ming, Zhang Bangfu.Position sensorless control of modular linear flux-switching permanent magnet machine based on model reference adaptive system[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 132-139. [25] 孟高军, 袁野, 张亮, 等. 基于谐波抑制和扰动观测器的磁通切换永磁直线电机联合控制方法[J]. 电工技术学报, 2018, 33(9): 1957-1966. Meng Gaojun, Yuan Ye, Zhang Liang, et al.A joint control method for linear flux-switching permanent magnet machine based on harmonic suppression and disturbance observer[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1957-1966. [26] 孟高军, 袁野, 孙玉坤, 等. 带定位力补偿的扩张观测器磁通切换永磁直线电机无位置传感器控制策略[J]. 电工技术学报, 2018, 33(17): 4091-4101. Meng Gaojun, Yuan Ye, Sun Yukun, et al.Extended state observer with cogging force compensation for sensorless control strategy of linear flux-switching permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4091-4101. [27] Wang Wei, Feng Yanan, Shi Yan, et al.Direct thrust force control of primary permanent-magnet linear motors with single DC-link current sensor for subway applications[J]. IEEE Transactions on Power Electronics, 2019, DOI:10.1109/TPEL. 2019. 2923378. [28] Wang Wei, Feng Yanan, Shi Yan, et al.Fault-tolerant control of primary permanent-magnet linear motors with single phase current sensor for subway applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10546-10556. [29] Jones D R.A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21: 345-383. [30] 赵靖英, 孙政樑, 姚帅亮, 等. 新型双电源转换开关直流速动电磁机构的设计与优化[J]. 电机与控制学报, 2018, 22(5): 52-62. Zhao Jingying, Sun Zhengliang, Yao Shuailiang, et al.Design and optimization of DC electromagnetic mechanism with rapid action of new type of automatic transfer switching equipment[J]. Electric Machines and Control, 2018, 22(5): 52-62. |
|
|
|