|
|
Maximum Power Point Tracking Scheme for Thermoelectric Generators Based on Short-Circuit Current Method |
Wang Jun1, Yan Tiesheng1, Chen Liang1, Huang Tao1,2, Aiguo Patrick Hu3 |
1. Key Laboratory of Fluid and Power Machinery Ministry of Education Xihua University Chengdu 610039 China; 2. Department of Energy Politecnico di Torino Torino 10129 Italy; 3. Department of Electrical & Computer Engineering University of Auckland Auckland 1142 New Zealand |
|
|
Abstract Thermoelectric Generator (TEG), as a new energy generator, can convert heat into electricity energy directly, and maximum power point tracking (MPPT) plays a crucial role in this energy harvesting and conversion process. However, the internal resistance of TEG and maximum power point change with the external temperature. Therefore, a new short-circuit current MPPT algorithm for TEG is proposed in this paper. By analyzing the equivalent model of TEG and Boost converter, the proposed method can estimate the short-circuit current of TEG by using the instantaneous inductor current and its slope. Then the MPPT is achieved by a PI controller to regulate the root-mean-square value of the inductor current at half of the short-circuit current of TEG. Different from the traditional algorithms, the proposed method realizes MPPT without steady-state errors and oscillations, and has no negative effect on the normal operation of the converter. Finally, the simulation and experimental results show that the proposed method can effectively track the global maximum power point with only one current sensor, and the tracking process does not affect the normal operation of the main circuit, which reduces the cost and improves reliability.
|
Received: 28 September 2018
Published: 17 January 2020
|
|
|
|
|
[1] Sahin A Z, Yilbas B S.Thermodynamic irrever- sibility and performance characteristics of thermo- electric power generator[J]. Energy, 2013, 55(1): 899-904. [2] 张君君, 吴红飞, 邢岩, 等. 适用于温差发电的高效率耦合电感升降压变换器[J]. 电工技术学报, 2014, 29(10): 106-112. Zhang Junjun, Wu Hongfei, Xing Yan, et al.A high efficiency Boost-Buck converter with coupled inductor for thermoelectric generator[J]. Transactions of China Electrotechnical Society 2014, 29(10): 106-112. [3] He Wei, Zhang Gan, Zhang Xingxing, et al.Recent development and application of thermoelectric generator and cooler[J]. Applied Energy, 2015, 143: 1-25. [4] Limpahan K S, Viña R R, Alagao F B.Performance evaluation of direct-contact cooling tower used on thermoelectric module and parabolic trough collector for power generation[C]//IEEE International Con- ference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Palawan, Philippines, 2015: 1-6. [5] Lefranc G, Gomes P, Calixto W, et al.Waste heat recovery plant for exhaust ducts using thermoelectric generators[J]. IEEE Latin America Transactions, 2016, 14(6): 2752-2757. [6] Zhang Hongyuan, Li Zhaohao, Zhou Nan, et al.Thermoelectric power generation research based on the boiler tail flue waste heat[C]//2nd IET Renewable Power Generation Conference, Beijing, China, 2013, DOI: 10.1049/CP.2013.1730. [7] Zarate-Roldan J, Carreon-Bautista S, Costilla-Reyes A, et al.A power management unit with 40dB switching-noise-suppression for a thermal harvesting array[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2015, 62(8): 1918-1928. [8] Hidaka A, Tsuji T, Matsumoto S.A thermoelectric power generation system with ultra low input voltage Boost converter with maximum power point tracking[C]//IEEE International Conference on Renewable Energy Research and Applications, Nagasaki, Japan, 2012: 1-5. [9] Im J P, Wang S W, Lee K H, et al.A 40mV transformer-reuse self-startup Boost converter with MPPT control for thermoelectric energy harvesting[C]// IEEE Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 2012: 104-106. [10] Kim J, Kim C.A DC-DC Boost converter with variation-tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting appli- cations[J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3827-3833. [11] Jeevitha S, Rajan S E, Rakesh T.Performance analysis of high gain DC-DC Boost converter for thermoelectric power generation system[C]//IEEE International Conference on Green Computing Com- munication and Electrical Engineering, Coimbatore, India, 2014: 1-7. [12] Laird I, Lu D C.High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator[J]. IEEE Transactions on Power Electro- nics, 2012, 28(7): 3147-3157. [13] Carreon-Bautista S, Eladawy A, Mohieldin A N, et al.Boost converter with dynamic input impedance matching for energy harvesting with multi-array thermoelectric generators[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5345-5353. [14] Chen Min.Reconfiguration of sustainable thermo- electric generation using wireless sensor network[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2776-2783. [15] Chatzidakis P G, Christidis G C, Tatakis E C.Comparative study of MPPT algorithms for thermo- electric generators[C]//IEEE European Conference on Power Electronics and Applications, Lille, France, 2013: 1-8. [16] Montecucco A, Knox A R.Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 828-839. [17] Bond M, Park J D.Current-sensorless power estimation and MPPT implementation for thermo- electric generators[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5539-5548. [18] Ramadass Y K, Chandrakasan A P.A battery-less thermoelectric energy harvesting interface circuit with 35mV startup voltage[J]. IEEE Journal of Solid-State Circuits, 2010, 46(1): 333-341. [19] Wang Chuang, Li Zunchao, Zhao Kai, et al.Efficient self-powered convertor with digitally controlled oscillator-based adaptive maximum power point tracking and RF kick-start for ultralow-voltage thermoelectric energy harvesting[J]. IET Circuits Devices & Systems, 2016, 10(2): 147-155. [20] Dalala Z M, Zahid Z U.New MPPT algorithm based on indirect open circuit voltage and short circuit current detection for thermoelectric generators[C]// IEEE Energy Conversion Congress and Exposition, Montreal, QC, Canada, 2015: 1062-1067. [21] 商立群, 朱伟伟. 基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法[J]. 电工技术学报, 2019, 34(12): 2606-2614. Shang Liqun, Zhu Weiwei.Photovoltaic system global maximum power point tracking method based on the global learning adaptive bacteria foraging algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2606-2614. [22] 田兵, 赵克, 孙东阳,等. 改进型变步长最大功率跟踪算法在风力发电系统中的应用[J]. 电工技术学报, 2016, 31(6): 226-233. Tian Bing, Zhao Ke, Sun Dongyang, et al.Promoted variable step maximum power point tracking algo- rithm used in the wind energy conversion system[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 226-233. [23] 李涛. 基于热电效应的热回收应用技术研究和设备开发[D]. 长沙: 湖南大学, 2010. [24] 刘玉春. 基于有机/无机杂化材料及器件的热电性能研究[D]. 武汉: 华中科技大学, 2017. [25] 陈金灿, 严子浚. 半导体温差发电器性能的优化分析[J]. 半导体学报, 1994, 15(2): 123-129. Chen Jincan, Yan Zijun.Optimal analysis on performance of a semiconductor thermoelectric generator[J]. Chinese Journal of Semiconductors, 1994,15(2): 123-129. [26] Tsai H L, Lin J M.Model building and simulation of thermoelectric module using Matlab/Simulink[J]. Journal of Electronic Materials, 2010, 39(9): 2105-2111. [27] Lineykin S B, Ben-Yaakov S.PSPICE-compatible equivalent circuit of thermoelectric cooler[C]//IEEE Power Electronics Specialists Conference, Recife, Brazil, 2005: 608-612. [28] 陈庆彬, 陈为. 开关电源中变压器共模传导噪声抑制能力的评估方法[J]. 中国电机工程学报, 2012, 32(18): 73-79. Chen Qingbing, Chen Wei.An evaluation method of transformer behaviors on the suppression of common- mode conduction noise in switch mode power supply[J]. Proceedings of the CSEE, 2012, 32(18): 73-79. [29] 张逸成, 叶尚斌, 张佳佳, 等. 电力电子设备传导噪声抑制措施研究综述[J]. 电工技术学报, 2017, 32(14): 77-86. Zhang Yicheng, Ye Shangbin, Zhang Jiajia, et al.Review of conducted noise suppression method for power electronic and electrical equipment[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(14): 77-86. |
|
|
|