|
|
Novel General-Purpose IGBT Test Platform for Hybrid DC Circuit Breakers and Analysis |
Deng Erping1, Ying Xiaoliang1,2, Zhang Chuanyun1, Zhao Zhibin1, Huang Yongzhang1 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electrical Power University Beijing 102206 China; 2. Global Energy Interconnection Research Institute Co. Ltd Beijing 102209 China |
|
|
Abstract Insulated gate bipolar transistor (IGBT) devices for hybrid Direct Current (DC) circuit breakers must not only ensure their safety and reliability, but also fully exploit their capabilities, especially the turn-off capability. However, the current research on IGBT device characteristic in this application is not perfect, especially the turn-off characteristics with high current. Therefore, it is necessary to test the ultimate capability of IGBT devices through special test platforms, including ultimate turn-off capability, reclosing turn-off capability and so on. This paper proposes an electrical stress test circuit for IGBT devices from the perspective of hybrid DC circuit breakers. Firstly, the electrical stress commonality of IGBT devices under different circuit breaker topologies and operating conditions is analyzed and summarized. Based on this, a new universal test circuit topology of IGBT devices for hybrid DC circuit breakers is proposed. The proposed test circuit has good flexibility in circuit parameter adjustment to meet different tests and analysis requirements of DC circuit breaker under various operating conditions. And then the corresponding test platform is built based on the circuit. Further, a simplified model considering the parasitic parameters and special component parameters is established for the test platform, and then the analytical analysis of the electrical stress of the tested IGBT device is obtained at each phase of the test. The experimental results verify the effectiveness of the test circuit and the highly adjustment of the test electrical stress. The test circuit topology, test electrical stress analysis and adjustment methods proposed in this paper can be widely applied to the evaluation and R&D test of IGBT devices for circuit breakers.
|
Received: 16 October 2018
Published: 17 January 2020
|
|
|
|
|
[1] Pan Jiuping, Nuqui R, Srivastava K, et al.AC grid with embedded VSC-HVDC for secure and efficient power delivery[C]//IEEE Energy 2030 Conference, Atlanta, 2008: 1-6. [2] 顾益磊, 唐庚, 黄晓明, 等. 含多端柔性直流输电系统的交直流电网动态特性分析[J]. 电力系统自动化, 2013, 37(15): 27-34. Gu Yilei, Tang Geng, Huang Xiaoming, et al.Dynamic characteristic analysis of hybrid AC/DC power grid with multi-terminal HVDC based on modular multi level converter[J]. Automation of Electric Power Systems, 2013, 37(15): 27-34. [3] 汤广福, 王高勇, 贺之渊, 等. 张北500kV直流电网关键技术与设备研究[J]. 高电压技术, 2018, 44(7): 2097-2106. Tang Guangfu, Wang Gaoyong, He Zhiyuan, et al.Research on key technology and equipment for Zhangbei 500kV DC grid[J]. High Voltage Engin- eering, 2018, 44(7): 2097-2106. [4] Franck C M.HVDC circuit breakers: a review identifying future research needs[J]. IEEE Transa- ctions on Power Delivery, 2011, 26(2): 998-1007. [5] 张祖安, 黄瑜珑, 温伟杰, 等. 基于VSC的直流输电系统中快速直流断路器的重要性和研究[C]//首届直流输电与电力电子专委会学术年会, 北京, 2012: 512-519. [6] 姚良忠, 吴婧, 王志冰, 等. 未来高压直流电网发展形态分析[J]. 中国电机工程学报, 2014, 34(34): 6007-6020. Yao Liangzhong, Wu Jing, Wang Zhibing, et al.Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE, 2014, 34(34): 6007-6020. [7] Hassanpoor A, Häfner J, Jacobson B.Technical assessment of load commutation switch in hybrid HVDC breaker[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5393-5400. [8] Hafner J.Proactive hybrid HVDC breakers-a key innovation for reliable HVDC grids[C]//Integrating Supergrids and Microgrids International Symposium, Bologna, Italy, 2011: 1-9. [9] Callavik M, Blomberg A, Häfner J, et al.The hybrid HVDC breaker an innovation breakthrouth enabling reliable HVDC grids[R]. 2012. [10] 魏晓光, 高冲, 罗湘, 等. 柔性直流输电网用新型高压直流断路器设计方案[J]. 电力系统自动化, 2013, 37(15): 95-102. Wei Xiaoguang, Gao Chong, Luo Xiang, et al.Novel design of high-voltage DC circuit breaker in HVDC flexible transmiss[J]. Automation of Electric Power Systems, 2013, 37(15): 95-102. [11] 高明超, 韩荣刚, 赵哿, 等. 压接式IGBT芯片的研制[J]. 固体电子学研究与进展, 2016, 36(1): 50-53. Gao Mingchao, Han Ronggang, Zhao Ge, et al.The research on IGBT chip for press-pack[J]. Research & Progress of SSE, 2016, 36(1): 50-53. [12] 冷国庆, 赵哿, 金锐, 等. 高关断能力压接型IGBT器件研制[J]. 大功率变流技术, 2017, 1(5): 70-73. Leng Guoqing, Zhao Ge, Jin Rui, et al.Research on the press-pack IGBT with high SCSOA[J]. High Power Converter Technology, 2017, 1(5): 70-73. [13] Dugal F, Baschnagel A, Rahimo M, et al.The next generation 4500V/3000A BIGT stakpak modules[C]// PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2017: 1-5. [14] 窦泽春, 刘国友, 陈俊, 等. 大功率压接型IGBT器件设计与关键技术[J]. 大功率变流技术, 2016, 1(2): 21-25. Dou Zechun, Liu Guoyou, Chen Jun, et al.Design and key technologies of high-power press-pack IGBT device[J]. High Power Converter Technology, 2016, 1(2): 21-25. [15] Belda N A, Smeets R P P. Test circuits for HVDC circuit breakers[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 285-293. [16] Chen Zhengyu, Yu Zhanqing, Zhang Xiangyu, et al.Analysis and experiments for IGBT, IEGT, and IGCT in hybrid DC circuit breaker[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 2883-2892. [17] 丁骁, 汤广福, 韩民晓, 等. IGBT串联阀混合式高压直流断路器分断应力分析[J]. 中国电机工程学报, 2018, 36(6): 1846-1856. Ding Xiao, Tang Guangfu, Han Minxiao, et al.Analysis of the turn-off stress on hybrid DC circuit breaker with IGBT series valve[J]. Proceedings of the CSEE, 2018, 36(6): 1846-1856. [18] Zhou Wandi, Wei Xiaoguang, Zhang Sheng, et al.Development and test of a 200kV full-bridge based hybrid HVDC breaker[C]//17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, 2015: 1-7. [19] 赵志斌, 邓二平, 张朋, 等. 换流阀用与直流断路器用压接型IGBT器件差异分析[J]. 电工技术学报, 2017, 32(19): 125-133. Zhao Zhibin, Deng Erping, Zhang Peng, et al.Review of the difference between the press pack IGBT using for converter valve and for DC breaker[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(19): 125-133. [20] 邓二平, 张传云, 应晓亮, 等. 混合型直流断路器用IGBT测试平台建模与分析[J]. 半导体技术, 2019, 44(2): 154-160. Deng Erping, Zhang Chuanyun, Ying Xiaoliang, et al.Modeling and analysis of IGBT test platform for hybrid DC circuit breaker[J]. Semiconductor Tech- nology, 2019, 44(2): 154-160. [21] Jones R A, Clifton P R, Grotz G, et al.Modeling of metal oxide surge arresters[J]. IEEE Transactions on Power Delivery, 1992, 7(1): 302-309. [22] 陈洁, 郭洁, 邱爱慈, 等. 特快速瞬态过电压作用下金属氧化物电阻片响应特性试验[J]. 中国电机工程学报, 2015, 35(13): 3436-3442. Chen Jie, Guo Jie, Qiu Aici, et al.Experimental investigation on the response characteristics of metal oxide varistors under very fast transient over- voltage[J]. Proceedings of the CSEE, 2015, 35(13): 3436-3442. [23] 何雨微, 司文荣, 魏本刚, 等. 考虑吸收能量估算的金属氧化物避雷器模型准确性分析[J]. 中国电机工程学报, 2017, 37(10): 3019-3027. He Yuwei, Si Wenrong, Wei Bengang, et al.Accuracy analysis of metal-oxide arrester simulation models considering the energy absorption estimation under impulse currents with different steepness[J]. Pro- ceedings of the CSEE, 2017, 37(10): 3019-3027. [24] Martinez J A, Durbak D W.Parameter determination for modeling systems transients-part V: surge arresters[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 2073-2078. [25] 何雨微, 瞿佥炜, 刘亚坤, 等. 后续回击下限压型浪涌保护器的伏安特性及其级联配合[J]. 电工技术学报, 2017, 32(1): 197-205. He Yuwei, Qu Qianwei, Liu Yakun, et al.Volt- ampere characteristics and cascade coordination of subsequent impact-type surge protectors[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(1): 197-205. [26] 邓二平, 赵志斌, 张朋, 等. 压接型IGBT器件内部压力分布[J]. 电工技术学报, 2017, 32(6): 201-208. Deng Erping, Zhao Zhibin, Zhang Peng, et al.Clamping force distribution within press pack IGBTs[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 201-208. [27] 张经纬, 邓二平, 赵志斌, 等. 压接型IGBT器件单芯片子模组疲劳失效的仿真[J]. 电工技术学报, 2018, 33(18): 4277-4285. Zhang Jingwei, Deng Erping, Zhao Zhibin, et al.Simulation on fatigue failure of single IGBT chip module of press-pack IGBTs[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4277-4285. |
|
|
|