|
|
A Review of Domestic and Foreign Ancillary Services Market for Improving Flexibility of New Power System |
Wu Shan1, Bian Xiaoyan1, Zhang Jingxian2, Lin Yi3, Lin Weiwei3 |
1. Shanghai University of Electric Power Shanghai 200090 China; 2. Zhengzhou Electric Power College Zhengzhou 450000 China; 3. State Grid Fujian Power Economic Research Institute Fuzhou 350012 China |
|
|
Abstract The participants and market mechanism of traditional ancillary service market in China cannot cope with the flexibility challenge of the power system dominated by high proportion of renewable energy in the future. Therefore, it is necessary to explore the development ideas of ancillary service market under the challenge of flexibility of new power system. Based on domestic and foreign literature, reports and project experience, this paper comprehensively proposes an ancillary service market development plan for new power system flexibility enhancement from the perspective of flexibility resources and market design. (1) Tap the potential of flexible resource regulation and form diversified auxiliary service market participants. Diversified resources such as energy storage, controllable load and electric vehicles should be encouraged and guided to participate in auxiliary services, and the scope of market players should be further expanded, so as to encourage diverse players to release their flexible regulation potential by market-based means. (2) Explore and develop diversified auxiliary service products. When the spot market is mature and the price signals tend to be perfect, the peak-regulating products can be phased out through the real-time market. The types of auxiliary service products such as standby and frequency modulation should be improved. In areas with a high proportion of new energy, the establishment of auxiliary service products such as fast frequency response and fast slope climbing should be explored. (3) Combined management of auxiliary service resources. More distributed resources in the distribution network are guided to participate in the auxiliary service market. DSO manages local flexible resources, and TSO collaborates with DSO to operate the auxiliary service market. Explore the inter-provincial auxiliary service market, break the inter-provincial electricity trade barriers, and realize the reasonable reserve of trans-regional resources. (4) Improving the pricing mechanism for auxiliary services. Market competition is adopted to determine the providers of auxiliary services, and the ability of different resources to provide auxiliary services is assessed quantitatively and precisely. The corresponding prices of different auxiliary services are calculated fairly, and the cost of auxiliary services is channeled to users according to the principle of "who benefits and who shares".
|
Received: 29 October 2021
|
|
|
|
|
[1] IRENA. Power system flexibility for the energy transition, part1: overview for policy makers[R]. Abu Dhabi: International Renewable Energy Agency, 2018. [2] 北极星电力网. 碳达峰碳中和2020年终大盘点[EB/OL]. http://guangfu.bjx.com.cn/news/20210222/1137375.shtml. [3] 北极星电力网新闻中心. 习近平主持召开会议: 构建以新能源为主体的新型电力系统[EB/OL].https://news.bjx.com.cn/html/20210315/1141814.shtml. [4] 北极星售电网. 中国能源大数据报告(2021)[EB/OL].https://shoudian.bjx.com.cn/html/20210617/1158624.shtml. [5] 温步瀛, 周峰, 程浩忠, 等. 电力市场辅助服务及其定价研究综述[J]. 华东电力, 2001, 29(11): 30-34. Wen Buying, Zhou Feng, Cheng Haozhong, et al.Power market ancillary service and its pricing research review[J]. East China Electric Power, 2001, 29(11): 30-34. [6] 何永秀, 陈倩, 费云志, 等. 国外典型辅助服务市场产品研究及对中国的启示[J]. 电网技术, 2018, 42(9): 2915-2922. He Yongxiu, Chen Qian, Fei Yunzhi, et al.Typical foreign ancillary service market products and enlightenment to China[J]. Power System Technology, 2018, 42(9): 2915-2922. [7] 朱继忠, 叶秋子, 邹金, 等. 英国电力辅助服务市场短期运行备用服务机制及启示[J]. 电力系统自动化, 2018, 42(17): 1-8, 86. Zhu Jizhong, Ye Qiuzi, Zou Jin, et al.Short-term operation service mechanism of ancillary service in the UK electricity market and its enlightenment[J]. Automation of Electric Power Systems, 2018, 42(17): 1-8, 86. [8] 石剑涛, 郭烨, 孙宏斌, 等. 备用市场机制研究与实践综述[J]. 中国电机工程学报, 2021, 41(1): 123-134, 403. Shi Jiantao, Guo Ye, Sun Hongbin, et al.Review of research and practice on reserve market[J]. Proceedings of the CSEE, 2021, 41(1): 123-134, 403. [9] 陈浩, 贾燕冰, 郑晋, 等. 规模化储能调频辅助服务市场机制及调度策略研究[J]. 电网技术, 2019, 43(10): 3606-3617. Chen Hao, Jia Yanbing, Zheng Jin, et al.Research on market mechanism and scheduling strategy of frequency regulation auxiliary service of large-scale energy storage[J]. Power System Technology, 2019, 43(10): 3606-3617. [10] 吴洲洋, 艾欣, 胡俊杰. 电动汽车聚合商参与调频备用的调度方法与收益分成机制[J]. 电网技术, 2021, 45(3): 1041-1050. Wu Zhouyang, Ai Xin, Hu Junjie.Dispatching and income distributing of electric vehicle aggregators’ participation in frequency regulation[J]. Power System Technology, 2021, 45(3): 1041-1050. [11] 赵晋泉, 孙中昊, 杨余华, 等. 分布式光伏参与调频辅助服务交易机制研究[J]. 全球能源互联网, 2020, 3(5): 477-486. Zhao Jinquan, Sun Zhonghao, Yang Yuhua, et al.Study on frequency regulation ancillary service trading mechanisms for distributed photovoltaic generation[J]. Journal of Global Energy Interconnection, 2020, 3(5): 477-486. [12] 刘永奇, 张弘鹏, 李群, 等. 东北电网电力调峰辅助服务市场设计与实践[J]. 电力系统自动化, 2017, 41(10): 148-154. Liu Yongqi, Zhang Hongpeng, Li Qun, et al.Design and practice of peak regulation ancillary service market for Northeast China power grid[J]. Automation of Electric Power Systems, 2017, 41(10): 148-154. [13] 徐帆, 葛朝强, 吴鑫, 等. 区域电网省间调峰辅助服务的市场机制与出清模型[J]. 电力系统自动化, 2019, 43(16): 109-115. Xu Fan, Ge Zhaoqiang, Wu Xin, et al.Market mechanism and clearing model of inter-provincial peak regulation ancillary service for regional power grid[J]. Automation of Electric Power Systems, 2019, 43(16): 109-115. [14] 黄海煜, 王春明, 夏少连, 等. 兼顾正负旋转备用的华中电力调峰辅助服务市场设计与实践[J]. 电力系统自动化, 2020, 44(16): 171-177. Huang Haiyu, Wang Chunming, Xia Shaolian, et al.Design and practice of peak regulation auxiliary service market for central China power grid considering positive and negative spinning reserve[J]. Automation of Electric Power Systems, 2020, 44(16): 171-177. [15] 肖云鹏, 张兰, 张轩, 等. 包含独立储能的现货电能量与调频辅助服务市场出清协调机制[J]. 中国电机工程学报, 2020, 40(增刊1): 167-180. Xiao Yunpeng, Zhang Lan, Zhang Xuan, et al.The coordinated market clearing mechanism for spot electric energy and regulating ancillary service incorporating independent energy storage resources[J]. Proceedings of the CSEE, 2020, 40(S1): 167-180. [16] 孙冰莹, 杨水丽, 刘宗歧, 等. 国内外兆瓦级储能调频示范应用现状分析与启示[J]. 电力系统自动化, 2017, 41(11): 8-16, 38. Sun Bingying, Yang Shuili, Liu Zongqi, et al.Analysis on present application of megawatt-scale energy storage in frequency regualtion and its enlightenment[J]. Automation of Electric Power Systems, 2017, 41(11): 8-16, 38. [17] Meng Lexuan, Zafar J, Khadem S K, et al.Fast frequency response from energy storage systems: a review of grid standards, projects and technical issues[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1566-1581. [18] Banshwar A, Sharma N K, Sood Y R, et al.Renewable energy sources as a new participant in ancillary service markets[J]. Energy Strategy Reviews, 2017, 18: 106-120. [19] Tan Yingjie, Muttaqi K M, Ciufo P, et al.Enhanced frequency response strategy for a PMSG-based wind energy conversion system using ultracapacitor in remote area power supply systems[J]. IEEE Transactions on Industry Applications, 2017, 53(1): 549-558. [20] Badesa L, Strbac G, Magill M, et al.Ancillary services in Great Britain during the COVID-19 lockdown: a glimpse of the carbon-free future[J]. Applied Energy, 2021, 285: 1-10. [21] Khoshjaha M, Fotuhi-Firuzabad M, Moeini-Aghtaie M, et al.Enhancing electricity market flexibility by deploying ancillary services for flexible ramping product procurement[J]. Electric Power Systems Research, 2021, 191(10): 68-78. [22] Swissgrid. New members join international FCR cooperation[EB/OL].https://www.swissgrid.ch/en/home/newsroom/newsfeed/20210119-01.html. [23] 北极星电力网新闻中心. “十四五”构建新型电力系统需要抓住四个关键[EB/OL].https://news.bjx.com.cn/html/20210517/1152879.shtml. [24] Yang Jiajia, Dong Zhaoyang, Wen Fushuan, et al.Spot electricity market design for a power system characterized by high penetration of renewable energy generation[J]. Energy Conversion and Economics, 2021, 2(2): 67-78. [25] Orvis R, Aggarwal R.A roadmap for finding flexibility in wholesale markets[R]. America: Energy Innovation: Policy and Technology LLC, 2017. [26] 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44(8): 2998-3007. Wang Bo, Yang Deyou, Cai Guowei.Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44(8): 2998-3007. [27] 林晓煌, 文云峰, 杨伟峰. 惯量安全域: 概念、特点及评估方法[J]. 中国电机工程学报, 2021, 41(9): 3065-3079. Lin Xiaohuang, Wen Yunfeng, Yang Weifeng.Inertia security region: concept, characteristics, and assessment method[J]. Proceedings of the CSEE, 2021, 41(9): 3065-3079. [28] Version for ACER Opinion. TYNDP 2020-Insight report: The inertia challenge in Europe[R]. Belgium: ENTSO-E, 2021. [29] Australian Energy Market Commission. Mechanisms to enhance resilience in the power system: review of the South Australian black system event[R]. South Australia: Australia Energy Market Commission, 2019. [30] National Grid ESO.The technical report to the event of 9 August 2019[R]. Warwick: National Grid ESO, 2019. [31] 江琴, 刘天琪, 曾雪洋, 等. 大规模风电与直流综合作用对送端系统暂态稳定影响机理[J]. 电网技术, 2018, 42(7): 2038-2046. Jiang Qin, Liu Tianqi, Zeng Xueyang, et al.Influence mechanism of comprehensive action of large-scale wind power and HVDC transmission system on sending system transient stability[J]. Power System Technology, 2018, 42(7): 2038-2046. [32] 毕平平, 许晓艳, 梅文明, 等. 风电基地连锁脱网风险评估方法及送出能力研究[J]. 电网技术, 2019, 43(3): 903-910. Bi Pingping, Xu Xiaoyan, Mei Wenming, et al.Study on cascaded tripping-off risk assessment method and delivery capacity of wind power base[J]. Power System Technology, 2019, 43(3): 903-910. [33] 北极星电力网新闻中心. 岳昊: 我国构建新型电力系统面临的问题、风险与建议[EB/OL].https://news.bjx.com.cn/html/20210513/1152253.shtml. [34] International Energy Agency.European Union 2020 energy policy review[R]. Paris: International Energy Agency, 2020. [35] 国网能源研究院有限公司. 《中国新能源发电分析报告2020》[M]. 北京: 中国电力出版社, 2020. [36] 袁家海, 席星璇. 我国电力辅助服务市场建设的现状与问题[J]. 中国电力企业管理, 2020, 4(7): 34-38. Yuan Jiahai, Xi Xingxuan.The present situation and problems of China's electric power auxiliary service market construction[J]. China Power Enterprise Management, 2020, 4(7): 34-38. [37] 李滨, 李星辰, 阳育德, 等. 主动配电网辅助服务共享机制控制模式的研究[J]. 电力系统保护与控制, 2017, 45(22): 40-47. Li Bin, Li Xingchen, Yang Yude, et al.Research of control model with ancillary services sharing mechanism for active distribution network[J]. Power System Protection and Control, 2017, 45(22): 40-47. [38] 百度百科. 零和博弈[EB/OL]. https://baike.baidu.com/item/%E9%9B%B6%E5%92%8C%E5%8D%9A%E5%BC%88/3562463?fr=aladdin [39] 杨珺, 李凤婷, 张高航. 考虑灵活性需求的新能源高渗透系统规划方法[J/OL]. 电网技术, 1-12[2022-02-25].DOI:10.13335/j.1000-3673.pst.2021.0943. Yang Jun, Li Fengting, Zhang Gaohang.Planning method of power system with high new energy penetration considering flexibility requirements[J/OL]. Power System Technology, 1-12[2022-02-25]. DOI: 10.13335/j.1000-3673.pst.2021.0943. [40] 中电联理事会工作部. 煤电机组灵活性运行与延寿运行研究[R]. 北京, 2020. [41] 张晋芳, 元博. “十四五”电力系统灵活性资源供需平衡分析[J]. 中国电力企业管理, 2020, 4(19): 36-38. Zhang Jinfang, Yuan Bo.Analysis on the balance between supply and demand of flexible resources in power system during the 14th Five-Year Plan Period[J]. China Power Enterprise Management, 2020, 4(19): 36-38. [42] 国家能源局南方监管局. 南方区域发电厂并网运行管理实施细则(2017版)[EB/OL]. https://news.bjx.com.cn/html/20180118/874881.shtml. [43] 新华网. 国家电网公司发布服务碳达峰碳中和、构建新型电力系统、加快抽水蓄能开发建设重要举措[EB/OL]. http://www.xinhuanet.com/energy/2021-03/22/c_1127241035.htm. [44] Faiella M, Hennig T, Antonio Cutululis N, et al.Capabilities and costs for ancillary services provision by wind power plants[R]. Bremerhaven: Fraunhofer Institute for Wind Energy Systems, 2013. [45] 胡家欣, 胥国毅, 毕天姝, 等. 减载风电机组变速变桨协调频率控制方法[J]. 电网技术, 2019, 43(10): 3656-3663. Hu Jiaxin, Xu Guoyi, Bi Tianshu, et al.A strategy of frequency control for deloaded wind turbine generator based on coordination between rotor speed and pitch angle[J]. Power System Technology, 2019, 43(10): 3656-3663. [46] 潘文霞, 全锐, 王飞. 基于双馈风电机组的变下垂系数控制策略[J]. 电力系统自动化, 2015, 39(11): 126-131, 186. Pan Wenxia, Quan Rui, Wang Fei.A variable droop control strategy for doubly-fed induction generators[J]. Automation of Electric Power Systems, 2015, 39(11): 126-131, 186. [47] Morren J, DeHaan S W H, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. [48] 赵晶晶, 吕雪, 符杨, 等. 基于可变系数的双馈风机虚拟惯量与超速控制协调的风光柴微电网频率调节技术[J]. 电工技术学报, 2015, 30(5): 59-68. Zhao Jingjing, Lü Xue, Fu Yang, et al.Frequency regulation of the wind/photovoltaic/diesel microgrid based on DFIG cooperative strategy with variable coefficients between virtual inertia and over-speed control[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 59-68. [49] Jibji-Bukar F, Anaya-Lara O.Frequency support from photovoltaic power plants using offline maximum power point tracking and variable droop control[J]. IET Renewable Power Generation, 2019, 13(13): 2278-2286. [50] GB/T19963—2011《风电场接入电力系统技术规定》[S]. 北京: 中国电力科学研究院, 2011. [51] Australian Energy Market Commission. National electricity amendment (fast frequency response market ancillary service) rule 2021[R]. Australia: Australian Energy Market Commission, 2021. [52] 李昭昱, 韦化, 胡弘. 约束紧凑与调节灵活的核电调峰安全出力模型[J]. 电力系统自动化, 2020, 44(4): 63-71. Li Zhaoyu, Wei Hua, Hu Hong.Safety output model with tight constraints and flexible regulation for nuclear power plant participating in peak load regulation[J]. Automation of Electric Power Systems, 2020, 44(4): 63-71. [53] National Energy Agency.Technical and economic aspects of load following with nuclear power plants[R]. London: National Energy Agency, 2011. [54] National Renewable Energy Laboratory. Flexible Nuclear Energy for Clean Energy Systems[R]. Denver: National Renewable Energy Laboratory, 2020. [55] Lee K, Choe J, Lee D.Application of load follow operation to equilibrium cycle of OPR1000[C]// Korean Nuclear Society Fall Meeting, Gyeongju, 2012. [56] EUR Organization.European utility requirements for LWR nuclear power plants, revision E[R]. Vienna: EUR Organization, 2016. [57] Murphy C, Mai T, Sun Y N, et al.Electrification futures study: Scenarios of power system evolution and infrastructure development for the United States[R]. America: National Renewable Energy Laboratory, 2021. [58] 北极星电力网. 双碳目标下电力需求响应工作思考[EB/OL].https://shupeidian.bjx.com.cn/html/20210305/1139897.shtml. [59] 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194-207. Jiang Haiyang, Du Ershun, Zhu Guiping, et al.Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(19): 194-207. [60] 李智豪. 基于灵活性品质评价的灵活性资源梯级优化利用研究[D]. 北京: 华北电力大学, 2019. [61] 国家发展改革委, 国家能源局. 关于加快推动新型储能发展的指导意见(征求意见稿)[R]. 北京, 2021. [62] Advanced Research Projects Agency-Energy. DAYS-Duration addition to electricity storage[R]. Washington, 2018. [63] Degefa M Z, Sperstad I B, Sæl H.Comprehensive classifications and characterizations of power system flexibility resources[J]. Electric Power Systems Research, 2021, 194: 1-16. [64] 詹勋淞, 管霖, 卓映君, 等. 基于形态学分解的大规模风光并网电力系统多时间尺度灵活性评估[J]. 电网技术, 2019, 43(11): 3890-3901. Zhan Xunsong, Guan Lin, Zhou Yingjun, et al.Multi-scale flexibility evaluation of large-scale hybrid wind and solar grid-connected power system based on multi-scale morphology[J]. Power System Technology, 2019, 43(11): 3890-3901. [65] 丁明, 高平平, 毕锐, 等. 考虑灵活性高渗透率可再生能源集群划分方法[J]. 电力系统及其自动化学报, 2021, 33(1): 115-122. Ding Ming, Gao Pingping, Bi Rui, et al.Cluster partition method for high-permeability renewable energy considering flexibility[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 115-122. [66] 卓映君, 管霖, 陈亦平, 等. 基于精细化备用需求评估和跨省区备用均衡的大电网优化调度模型[J]. 电网技术, 2021, 45(4): 1438-1450. Zhuo Yingjun, Guan Lin, Chen Yiping, et al.Optimal scheduling model of large power grid based on refined reserve demand estimation and cross-regional reserve balance[J]. Power System Technology, 2021, 45(4): 1438-1450. [67] DL/T1210—2013. 火力发电厂自动发电控制性能测试验收规程[S]. 2013. [68] 李丹, 梁吉, 孙荣富, 等. 并网电厂管理考核系统中AGC调节性能补偿措施[J]. 电力系统自动化, 2010, 34(4): 107-111. Li Dan, Liang Ji, Sun Rongfu, et al.Compensation strategies of AGC regulation performance in plants management and assessment system[J]. Automation of Electric Power Systems, 2010, 34(4): 107-111. [69] International Energy Agency.Status of power system transformation: power system flexibility[R]. Paris, 2019. [70] ENTSO-E.Survey on ancillary sevices procurement, balancing market design 2019[R]. Belgium, 2020. [71] International Renewable Energy Agency. Innovative ancillary services: innovation landscape brief[R]. Abu Dhabi, 2019. [72] U.S.Department of Energy. U.S. Hydropower market report[R]. Virginia, 2021. [73] Federal Energy Regulatory Commission. Essential reliability services and the evolving bulk-power system-primary frequency response[R]. Washington, 2018. [74] 山西能监办. 山西公示拟参与独立储能和用户可控负荷参与电力调峰市场交易企业(试点)[EB/OL].https://shoudian.bjx.com.cn/html/20210622/1159690.shtml. [75] 李建林, 李雅欣, 周喜超, 等. 储能商业化应用政策解析[J]. 电力系统保护与控制, 2020, 48(19): 168-178. Li Jianlin, Li Yaxin, Zhou Xichao, et al.Analysis of energy storage policy in commercial application[J]. Power System Protection and Control, 2020, 48(19): 168-178. [76] 北极星电力网. 内蒙古杭锦储能调频项目正式启动[EB/OL].https://chuneng.bjx.com.cn/news/20180417/892211.shtml. [77] 中国电力新闻网. 国网冀北电力打造风光储、虚拟电厂等“绿色引擎”为美好生活充电[EB/OL].https://chuneng.bjx.com.cn/news/20200617/1081828.shtml. [78] 国家能源局综合司. 关于公开征求对《并网主体并网运行管理规定(征求意见稿)》《电力系统辅助服务管理办法(征求意见稿)》意见的公告[R]. 北京, 2021. [79] Merino J, Gómez I, Turienzo E, et al.Ancillary service provision by RES and DSM connected at distribution level in the future power system[R]. North America: SmartNet, 2016. [80] Du Pengwei, Mago N V, Li Weifeng, et al.New ancillary service market for ERCOT[J]. IEEE Power & Energy Society Section, 2020, 8: 178391-178401. [81] EirGrid. DS3 system services qualification trials process outcomes and learnings[EB/OL]. http://www.eirgridgroup.com/site-files/library/EirGrid/DS3-System- Services-Qualification-Trials-Process-Outcomes-and Learnings-2017.pdf. [82] National Grid ESO.The enhanced frequency control capability project closing down report[EB/OL]. https://www.nationalgrideso.com/document/144441/download. [83] Electric Reliability Council of Texas. Overview of renewables in the ERCOT system[R]. Texas, 2018. [84] 陈亦平, 卓映君, 刘映尚, 等. 高比例可再生能源电力系统的快速频率响应市场发展与建议[J]. 电力系统自动化, 2021, 45(10): 174-183. Chen Yiping, Zhou Yingjun, Liu Yingshang, et al.Development and recommendation of fast frequency response market for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(10): 174-183. [85] 杨萌. 可再生能源高渗透率电力系统的有功辅助服务市场机制设计与出清模型研究[D]. 北京: 华北电力大学, 2020. [86] 张健男, 张弘鹏, 刘诚哲, 等. 东北调频辅助服务优化方案设计研究[J]. 电气时代, 2021(5): 30-32, 46. Zhang Jiannan, Zhang Hongpeng, Liu Chengzhe, et al.Research on the design of optimization scheme of frequency modulation auxiliary service in Northeast China[J]. Electric Age, 2021(5): 30-32, 46. [87] 北极星电力网. 国网华东分部完成华东电网备用辅助服务市场首次模拟运行[EB/OL].https://shupeidian.bjx.com.cn/html/20210420/1148241.shtml. [88] Rossi M, Migliavacca G, Viganò G, et al.TSO-DSO coordination to acquire services from distribution grids: simulations, cost-benefit analysis and regulatory conclusions from the SmartNet project[J]. Electric Power Systems Research, 2020, 189: 1-8. [89] Gerard H, Rivero E, Six D.Basic schemes for TSO-DSO coordination and ancillary services provision[R]. North America: SmartNet, 2016. [90] 宋栋. 新电改下我国辅助服务市场机制设计研究[D]. 北京: 华北电力大学, 2018. [91] 北极星电力网. 全国首个以调频服务为交易品种的区域辅助服务市场将于7月起正式运行[EB/OL].https://chuneng.bjx.com.cn/news/20210629/1160929.shtml. [92] 孙可, 吴臻, 尚楠, 等. 以省为实体的区域能源互联网内涵框架及发展方向分析[J]. 电力系统保护与控制, 2017, 45(5): 1-9. Sun Ke, Wu Zhen, Shang Nan, et al.Provincial regional energy internet framework and development tendency analysis[J]. Power System Protection and Control, 2017, 45(5): 1-9. [93] 国家能源局. 2021年能源监管工作要点[EB/OL]. http://zfxxgk.nea.gov.cn/2021-01/18/c_139713326.htm. [94] 王玉萍, 刘磊, 朱刚毅, 等. 基于欧洲共享备用机制的贵州市场跨省区交易研究[C]//第三届智能电网会议, 北京, 2018: 395-401. |
|
|
|