|
|
Influence about Reactive Power Voltage Optimization on the Dissipation of New Energy |
Liu Huazhi1, Li Yonggang1, Wang Youyin2, Zhang Xiaotian2, Cao Nanjun2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071000 China; 2. Economic and Technology Research Institute of State Grid Liaoning Electric Power Shenyang 110000 China |
|
|
Abstract Large-scale wind power and photovoltaic access to the power system will exacerbate the voltage fluctuations of the distribution network node, and the optimization of reactive voltage can effectively improve the voltage level of the system. The reactive power adjustment capability of the doubly-fed fan is analyzed firstly, and the influence model of reactive power optimization on distribution network voltage and new energy consumption is established. The distributed power sources such as wind power and photovoltaic have a certain amount of reactive power. In this paper, the margin reactive power optimization was used to optimize the reactive power, and the variance of the node voltage and the rated voltage deviation was taken as the target. Based on the conventional particle swarm optimization algorithm, intelligent particle number control was applied to improve the computational efficiency. Finally, the multi-scenario simulation analysis of the model is carried out by the IEEE 33 node system. The results show that the proposed reactive voltage optimization model can ameliorate the system voltage quality and improve the consumption capacity. In the high-permeability scenario, the system can use the reactive power of the wind power photovoltaic to optimize the system voltage level, and improve the system voltage level while ensuring the consumption of new energy. The location of new energy access affects the effect of reactive voltage optimization.
|
Received: 01 July 2018
Published: 02 January 2020
|
|
|
|
|
[1] 陈琳. 分布式发电接入电力系统若干问题的研究[D]. 杭州: 浙江大学, 2007. [2] 肖浩, 裴玮, 董佐民, 等. 基于元模型全局最优化方法的含分布式电源配电网无功优化[J]. 中国电机工程学报, 2018, 38(19): 5751-5762. Xiao Hao, Pei Wei, Dong Zuomin, et al.Reactive power optimization of distributed power distribution network based on global optimization method of metamodel[J]. Proceedings of the CSEE, 2018, 38(19): 5751-5762. [3] 郑能, 丁晓群. 基于场景法的配电网有功-无功协调优化[J]. 电网技术, 2019, 43(5): 1640-1649. Zheng Neng, Ding Xiaoqun.Active-reactive coor- dination optimization of distribution network based on scene method[J]. Power Grid Technology, 2019, 43(5): 1640-1649. [4] 张璐, 唐巍, 丛鹏伟, 等. 含光伏发电的配电网有功无功资源综合优化配置[J]. 中国电机工程学报, 2014, 34(31): 5525-5533. Zhang Lu, Tang Wei, Cong Pengwei, et al.Com- prehensive optimization of active and reactive resources in distribution network with photovoltaic power generation[J]. Proceedings of the CSEE, 2014, 34(31): 5525-5533. [5] 张艺镨, 艾小猛, 方家琨, 等. 基于极限场景的两阶段含分布式电源的配网无功优化[J]. 电工技术学报, 2018, 33(2): 380-389. Zhang Yipu, Ai Xiaomeng, Fang Jiakun, et al.Reactive power optimization of distribution network with two-stage distributed power supply based on limit scene[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 380-389. [6] 刘君伟. 多种新能源接入的地区电网无功电压控制研究[D]. 北京: 华北电力大学, 2017. [7] 刘文学, 梁军, 贠志皓, 等. 基于可信理论的多目标模糊机会约束无功优化[J]. 电工技术学报, 2015, 30(21): 82-89. Liu Wenxue, Liang Jun, Yun Zhihao, et al.Multi- objective fuzzy chance constrained reactive power optimization based on trusted theory[J]. Transactions of China Electrotechnical Society, 2015, 30(21): 82-89. [8] 张丽, 徐玉琴, 王增平, 等. 包含分布式电源的配电网无功优化[J]. 电工技术学报, 2011, 26(3): 168-174. Zhang Li, Xu Yuqin, Wang Zengping, et al.Reactive power optimization of distribution network with distributed power supply[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 168-174. [9] 王强钢, 雷超, 李勇, 等. 含电压不可行节点的受端电网动态无功优化方法[J]. 电工技术学报, 2018, 33(5): 1096-1105. Wang Qianggang, Lei Chao, Li Yong, et al.Dynamic reactive power optimization method for receiving power grid with voltage infeasible nodes[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(5): 1096-1105. [10] 张宁宇, 刘建坤, 周前, 等. 考虑无功控制特性的交直流电网双解耦潮流计算方法[J]. 电工技术学报, 2016, 31(增刊2): 102-109. Zhang Ningyu, Liu Jiankun, Zhou Qian, et al.A method for calculating double decoupling power flow of AC/DC power network considering reactive power control characteristics[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 102-109. [11] 李静, 戴文战, 韦巍. 基于混合整数凸规划的含风力发电机组配电网无功补偿优化配置[J]. 电工技术学报, 2016, 31(3): 121-129. Li Jing, Dai Wenzhan, Wei Wei.Optimization configuration of reactive power compensation for distribution network of wind turbines based on mixed integer convex programming[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 121-129. [12] 董萍, 徐良德, 刘明波, 等. 大电网多站点无功补偿协调控制的多目标混合优化方法[J]. 电工技术学报, 2017, 32(2): 271-280. Dong Ping, Xu Liangde, Liu Mingbo, et al.Multi- objective hybrid optimization method for coordinated control of multi-site reactive power compensation in large power grids[J]. Transactions of China Electro- technical Society, 2017, 32(2): 271-280. [13] 杨煦. 促进可再生能源消纳的主动配电网多目标优化运行研究[D]. 保定: 华北电力大学, 2015. [14] 陈懿, 刘涤尘, 吴军, 等. 分布式光伏电源对配电网电压波动的影响研究[J]. 电测与仪表, 2018, 55(14): 27-32. Chen Yi, Liu Dichen, Wu Jun, et al.Study on the influence of distributed photovoltaic power supply on distribution network voltage fluctuation[J]. Electrical Measurement & Instrumentation, 2018, 55(14): 27-32. [15] 王毅, 朱晓荣, 赵书强. 风力发电系统的建模与仿真[M]. 北京: 中国水利水电出版社, 2015. [16] Lee J H, Song J, Kim D.Particle swarm optimization algorithm with intelligent particle number control for optimal design of electric machines[J]. IEEE Transa- ctions on Industrial Electronics, 2018, 65(2): 1791-1798. [17] Navarro A, Ochoa L F, Dan R.Monte Carlo-based assessment of PV impacts on real UK low voltage net-works[C]//IEEE Power and Energy Society General Meeting, Vancouver, BC, Canada, 2013: 1-5. [18] Smith J W, Dugan R, Rylander M, et al.Advanced distribution planning tools for high penetration PV deployment[C]//IEEE Power and Energy Society General Meeting, Manchester Grand Hyatt, San Diego, California, USA, 2012: 1-7. [19] 王茂春. 双馈感应风力发电机组建模及其对无功的调节[C]//吉林省电机工程学会2008年学术年会论文集, 吉林, 2008: 9. |
|
|
|