|
|
Simulation of Safe Discharge and Sensitive Mechanism of Micro-Nano Ionized Mine Methane Sensor |
Chai Yu1, Gong Liping1, Zhang Jingyuan1,2, Zhao Yongxiu1 |
1. Electrical and Control Engineering Xi′an University of Science and Technology Xi′an 710054 China; 2. Postdoctoral Mobile Station of Mechanical Engineering Xi′an University of Science and Technology Xi'an 710054 China |
|
|
Abstract The methane detection in the mine environments is essential for the prevention of gas disasters. The micro-nano structure ionization sensors have characteristics of fast response, easy integration, etc., it is expected to achieve the rapidly and accurately detection of methane. At present, the internal mechanism of the new sensor is still incomplete, and there is no theoretical and parameter guidance for the safety characteristics of the methane discharge. A fluid-chemical kinetic mixing method was used to simulate the discharge dynamic process of methane-nitrogen mixed gas at the microtip gap of the nanotip. By calculating the degree of electric field distortion caused by space charge, the key parameters of methane non-spark discharge were analyzed, and the safe discharge mechanism of methane was explained based on the electron transport process. Analyzed the evolution process of the positive ion composition and the electron energy with the methane concentration, and finally established the relationship between macroscopic electrical characteristics of the device and the methane ionization effect, improved the sensitive mechanism of micro-nano ionization device, and analyzed its sensitivity. The research laid the theoretical foundation for the preparation of the mine ionized methane sensors.
|
Received: 21 September 2018
Published: 11 December 2019
|
|
|
|
|
[1] 夏晨阳, 庄裕海, 卢振洲, 等. 高瓦斯矿井无线供电系统安全容量研究[J]. 电工技术学报, 2013, 28(增刊2): 71-74. Xia Chenyang, Zhuang Yuhai, Lu Zhenzhou, et al.Research of safety capability for wireless power supply system used in high gas mine[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 71-74. [2] 杨艳芳, 裴凯龙, 尹旭坤, 等. 双光程光声光谱甲烷传感器[J]. 光谱学与光谱分析, 2018, 38(2): 616-620. Yang Yanfang, Pei Kailong, Yin Xukun, et al.Double-path photoacoustic spectroscopy methane sensor[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 616-620. [3] 吴水平. 矿用甲烷传感器研究进展及存在的问题[J]. 能源技术与管理, 2016, 41(5): 45-46, 98. Wu Shuiping.Research progress and existing problems of mine methane sensors[J]. Energy Technology and Management, 2016, 41(5): 45-46, 98. [4] 李广伟, 鲁俊民, 秦东振, 等. 离子液体在电流型电化学气体传感器中的应用[J]. 化工进展, 2013, 32(10): 2409-2415. Li Guangwei, Lu Junmin, Qin Dongzhen, et al.Application of ionic liquids in current-type electrochemical gas sensors[J]. Chemical Industry and Engineering Progress, 2013, 32(10): 2409-2415. [5] 蒋磊, 刘芳华. 催化燃烧型甲烷传感器恒温检测桥路的研究[J]. 工矿自动化, 2006(6): 14-16. Jiang Lei, Liu Fanghua.Study on the constant temperature detection bridge of catalytic combustion methane sensor[J]. Industry and Mine Automation, 2006(6): 14-16. [6] 丁恩杰, 马洪宇. 微纳甲烷传感技术的研究[J]. 工矿自动化, 2016, 42(3): 16-20. Ding Enjie, Ma Hongyu.Research on micro-nanomethane sensing technology[J]. Industry and Mine Automation, 2016, 42(3): 16-20. [7] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术, 2016, 44(1): 19-23. Sun Jiping.New technology and development of coal mine information automation[J]. Coal Science and Technology, 2016, 44(1): 19-23. [8] Modi A, Koratkar N, Lass E, et al.Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature, 2003, 424(6945): 171-174. [9] Liao L, Lu H B, Shuai M, et al.A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability[J]. Nanotechnology, 2008, 19(17): 175501. [10] Mohammadpour R, Ahmadvand H, Iraji Z A.A novel field ionization gas sensor based on self-organized CuO nanowire arrays[J]. Sensors and Actuators A: Physical, 2014, 216: 202-206. [11] Savari R, Savaloni H, Abbasi S, et al.Design and engineering of ionization gas sensor based on Mn nano-flower sculptured thin film as cathode and a stainless steel ball as anode[J]. Sensors & Actuators B Chemical, 2018, 266: 620-636. [12] Lee W C, Fang Y, Turner J F C, et al. An enhanced gas ionization sensor from Y-doped vertically aligned conductive ZnO nanorods[J]. Sensors and Actuators B: Chemical, 2016, 237: 724-732. [13] Zhang Jingyuan, Zhang Yong, Pan Zhigang, et al.Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes[J]. Applied Physics Letters, 2015, 107(9): 93104. [14] Zhang Yong, Li Shengtao, Zhang Jingyuan, et al.High-performance gas sensors with temperature measurement[J]. Scientific Reports, 2013, 3(1): 1267. [15] 李鑫涛, 林莘, 徐建源, 等. SF6/N2混合气体电击穿特性仿真及实验[J]. 电工技术学报, 2017(20): 42-52. Li Xintao, Lin Shen, Xu Jianyuan, et al.Simulation and experiment of electrical breakdown characteristics in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2017(20): 42-52. [16] 邓云坤, 马仪, 赵谡, 等. 基于电子输运参数的CF3I及CF3I-N2混合气体绝缘性能分析[J]. 电工技术学报, 2018, 33(7): 1641-1651. Deng Yunkun, Ma Yi, Zhao Su, et al.Analysis of the insulation properties of CF3I and CF3I-N2 gas mixtures from electron transport parameters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1641-1651. [17] 肖淞, 张晓星, 韩晔飞, 等. 不均匀电场下CF3I/N2混合气体工频击穿特性试验[J]. 电工技术学报, 2016, 31(20): 228-236. Xiao Song, Zhang Xiaoxing, Han Yefei, et al.Experiment on power frequency puncture of CF3I/N2 Gas mixtures in non-uniform electric fields[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 228-236. [18] 张晓星, 董星辰, 陈秦川. 锐钛矿型(101)晶面吸附SF6局部放电分解组分的气敏机理分析[J]. 电工技术学报, 2017, 32(3): 200-209. Zhang Xiaoxing, Dong Xingchen, Chen Qinchuan.Gas sensing mechanism analysis of SF6 decomposed gases adsorption on anatase(101) surface under partial discharge[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 200-209. [19] Gluch K, Scheier P, Schustereder W, et al.Cross sections and ion kinetic energies for electron impact ionization of CH4[J]. International Journal of Mass Spectrometry, 2003, 228(2-3): 307-320. [20] Pintassilgo C D, Loureiro J.Kinetic study of a N2-CH4 afterglow plasma for production of N-containing hydrocarbon species of titan's atmosphere[J]. Advances in Space Research, 2010, 46(5): 657-671. [21] Horvath G, Mason N J, Polachova L, et al.Packed bed DBD discharge experiments in admixtures of N2 and CH4[J]. Plasma Chemistry and Plasma Processing, 2010, 30(5): 565-577. [22] Snoeckx R, Setareh M, Aerts R, et al.Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2[J]. International Journal of Hydrogen Energy, 2013, 38(36): 16098-16120. [23] Electron scattering cross sections[EB/OL]. http://fr. lxcat. net/data/set_type. php. [24] 马文蔚, 解希顺, 周雨青. 物理学[M]. 北京: 高等教育出版社, 2006. [25] 张向宇. 实用化学手册 [M]. 2版. 北京: 国防工业出版社, 2011. [26] 刘学悫. 阴极电子学[M]. 北京: 科学出版社, 1980. [27] 王新庆, 王淼, 李振华, 等. 单根纳米导线场发射增强因子的计算[J]. 物理学报, 2005(3): 1347-1351. Wang Xinqing, Wang Wei, Li Zhenhua, et al.Calculation of field emission enhancement factor for single nanowires[J]. Acta Physica Sinica, 2005(3): 1347-1351. |
|
|
|