|
|
Dynamic Modeling of Magnetic Bearing-Rotor System on Moving Platform |
Jiang Hao, Su Zhenzhong, Wang Dong |
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract Because of the advantages of no physical contact with the rotor and controllable supportability, Active magnetic bearing (AMB) can help rotating machinery like motor run at high-speed and reduce its vibration and noise. In order to apply AMB to a moving platform like ship, this paper takes into account the nonlinear factors such as large amplitude motions and electromagnetic force, and make a analysis of the relationship between the stator and the carrier in motion. Then, Lagrange equation is used to derive the dynamics of the rotor at any inclined angle, both the electromagnetic force and the gravity load of AMB are calculated according to the relative position of the stator and the rotor. As a result, a mathematical model is established for the AMB-rotor system on the moving platform. Experiments show that the model is feasible and effective.
|
Received: 11 September 2018
Published: 11 December 2019
|
|
|
|
|
[1] Jiang Kejian, Zhu Changsheng.Multi-frequeiicy periodic vibration suppressing in active magnetic bearing rotor system via response matching in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1417-1429. [2] 陈亮亮, 祝长生, 王忠博. 基于逆系统解耦的电磁轴承飞轮转子系统二自由度控制[J]. 电工技术学报, 2017, 32(23): 100-114. Chen Liangliang, Zhu Changsheng, Wang Zhongbo.Two-degree-of-freedom control of flywheel rotor system for electromagnetic bearing based on inverse system decoupling[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 100-114. [3] 张维煜, 朱熀秋, 袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12):12-20. Zhang Weiyu, Zhu Huangqiu, Yuan Ye.Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20. [4] 宗鸣, 吴桐, 王大朋. 高速电机用混合式径向磁轴承前馈解耦控制[J].电工技术学报, 2015, 30(14): 539-544. Zong Ming, Wu Tong, Wang Dapeng.Feed-forward compensation decoupling control for hybrid radial magnetic bearing used in high speed electric machine[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 539-544. [5] 冯奕, 颜建虎. 基于飞轮储能的风力发电系统仿真[J]. 电力系统保护与控制, 2016, 44(20): 94-98. Feng Yi, Yan Jianhu.Simulation of wind energy generation system with flywheel storage system[J]. Power System Protection and Control, 2016, 44(20): 94-98. [6] 赵晗彤, 张建成. 基于滑模控制的飞轮储能稳定光伏微网离网运行母线电压策略的研究[J]. 电力系统保护与控制, 2016, 44(16): 36-42. Zhao Hantong, Zhang Jiancheng.Research on bus voltage control strategy of off-grid PV micro grid with flywheel energy storage system based on sliding mode control[J]. Power System Protection and Control, 2016, 44(16): 36-42. [7] 吴磊涛, 王东, 苏振中, 等. 考虑定子外壳漏磁的同极式永磁偏置径向磁轴承磁路模型[J]. 电工技术学报, 2017, 32(11): 118-125. Wu Leitao, Wang Dong, Su Zhenzhong, et al.Leakage magnetic field and precise magnetic circuit model of the permanent magnetic biased radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 118-125. [8] Gerhard Schweitzer, Eric H Maslen.Magnetic bearing: theory, design, and application to rotating machinery[M]. Berlin Heidelberg: Springer-Verlag, 2009. [9] 汪希平, 朱礼进, 于良, 等. 主动磁轴承转子系统动力学特性的研究[J]. 机械工程学报, 2001, 37(11):7-12. Wang Xiping, Zhu Lijin, Yu Liang, et al.Investigation on dynamic performance of active magnetic bearing rotor system[J]. Chinese Journal of Mechanical Engineering, 2001, 37(11): 7-12. [10] Ma Weiming.Development of vessel integrated power system[C]//IEEE International Conference on Electrical Machines and Systems, Beijing, 2011:1-12. [11] 戴兴建, 姜新建, 王秋楠, 等. 1MW/60MJ飞轮储能系统设计与实验研究[J]. 电工技术学报, 2017, 32(21): 169-175. Dai Xingjian, Jiang Xinjian, Wang Qiunan, et al.Design and experimental study of 1MW/60MJ flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 169-175. [12] Palazzolo A, Kenny A, Lei S, et al.Flywheel magnetic suspension developments[C]//IEEE Energy Conversion Engineering Conference, Washington, 2002: 161-166. [13] Zhang Weiwei.Coupled dynamic analysis of magnetic bearing-rotor system under the influences of base motion[J]. Applied Mechanics and Materials, 2012, 109(1): 199-203. [14] 虞烈. 可控磁悬浮转子系统[M]. 北京: 科学出版社, 2003. [15] Nelson J, Watkins J, Piper G.Active control of fan noise in ducts using magnetic bearings[R]. Maryland: United States Naval Academy, 2002. [16] Pichot M A, Kajs J P, Murphy B R, et al.Active magnetic bearings for energy storage systems for combat vehicles[J]. IEEE Transactions on Magnetics, 2001, 37(1): 318-323. [17] Chotiner J K, Khorasani H, Nairn A C, et al.Stabilization of active magnetic bearing system subject to base motion[C]//2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, USA, 2003: 2007-2013. [18] Vardhan A, Das A S, Dutt J K.Stability study for vibration control of an active magnetic bearing supported rotor mounted on a moving base[C]// Proceedings of the 9th IFTOMM International Conference on Rotor Dynamics, Cham, 2015: 1441-1452. [19] 杨红进. 车载飞轮电池减振机理研究[D]. 南京:南京航空航天大学, 2015. [20] 魏彤, 房建成. 磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J]. 宇航学报, 2005, 26(1): 19-23. Wei Tong, Fang Jiancheng.Moving-gimbal effects and angular rate feedforward control in magnetically suspended rotor system of CMG[J]. Journal of Astronautics, 2005, 26(1): 19-23. [21] 张磊, 裴世源, 徐华, 等. 摇摆工况下错位瓦轴承支撑的转子系统动力学特性[J]. 中国机械工程, 2017, 28(18): 2161-2170. Zhang Lei, Pei Shiyuan, Xu Hua, et al.Dynamics of rotor system supported by misaligned bearings under swing conditions[J]. China Mechanical Engineering, 2017, 28(18): 2161-2170. [22] 贾书惠. 刚体动力学[M]. 北京: 高等教育出版社, 1987. [23] 施建荣, 施诗, 张燕. 论舰船装备倾斜和摇摆环境适应性与实验[J]. 装备环境工程, 2011, 8(4): 41-44. Shi Jianrong, Shi Shi, Zhang Yan.On the adaptability and experiment of ship equipment tilting and swinging environment[J]. Equipment Environmental Engineering, 2011, 8(4): 41-44. |
|
|
|