|
|
An Interleaved Dual-Buck Full-Bridge Type Bidirectional Grid-Connected Inverter |
Wang Yifeng1, Cui Yulu1, Ma Xiaoyong1, Meng Zhun2, Ji Ruilin3 |
1. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China; 2. State Grid Tianjin Economic Research Institute Tianjin 300171 China; 3. State Grid Tianjin Power Costumer Service Center Tianjin 300210 China |
|
|
Abstract Based on the double-buck full-bridge converter topology, this paper proposes an interleaved parallel bidirectional grid-connected inverter. The proposed inverter can overcome the dead time of the traditional H-bridge inverter, greatly increase the switching frequency, and avoid the straight-through danger of bridge arm. In order to increasing the frequency and power density while ensuring the efficiency of the converter, a 2-channel interleaved parallel structure is adopted. Under the same output inductor current ripple, only a small amount of inductance is needed, and the current stress and loss of the high frequency switch tube can also be reduced. In this paper, the working principle and characteristics of the inverter and rectification modes of the converter are analyzed. At the same time, with the minimum inductance as the goal, the filter design requirements of different modes are comprehensively considered, and the Buck inductor and filter parameters were optimized using graphical methods. The parameters of the device are optimized. On this basis, the loss analysis model is constructed, and the loss distribution in the inverter and rectifier states is calculated and analyzed. Finally, this paper builds a 5kW experimental prototype, which verifies the above theoretical analysis and calculation. The efficiency of the inverter is higher than 98% from 20% to full load.
|
Received: 04 July 2018
Published: 18 November 2019
|
|
|
|
|
[1] 范士雄, 蒲天骄, 刘广一, 等. 主动配电网中分布式发电系统接入技术及其进展[J]. 电工技术学报, 2016, 31(增刊2): 92-101. Fan Shixiong, Pu Tianjiao, Liu Guangyi, et al.Technologies and its trends of grid integration of distributed generation in active distribution network[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 92-101. [2] 刘闯, 潘岱栋, 蔡国伟, 等. 适合低压配电网分布式发电的抗谐波干扰型增强锁相环路技术[J]. 电工技术学报, 2016, 31(10): 185-192. Liu Chuang, Pan Daidong, Cai Guowei, et al.Enhanced phased-locked loop technology with antiharmonic interference capability for distributed generation in low-volatge distribution[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(10): 185-192. [3] 杨晓东, 张有兵, 蒋杨昌, 等. 微电网下考虑分布式电源消纳的电动汽车互动响应控制策略[J]. 电工技术学报, 2018, 33(2): 390-400. Yang Xiaodong, Zhang Youbing, Jiang Yangchang, et al.Renewable energy accommodation-based strategy for electric vehicle considering dynamic interaction in microgrid[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 390-400. [4] 肖湘宁, 王鹏, 陈萌. 基于分布式多代理系统的孤岛微电网二次电压控制策略[J]. 电工技术学报, 2018, 33(8): 1894-1902. Xiao Xiangning, Wang Peng, Chen Meng.Secondary voltage control in an islanded microgrid based on distributed multi-agent system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1894-1902. [5] 雍静, 王铮. 单相不可控桥式整流滤波电路容性特性[J]. 电力系统自动化, 2014, 38(10): 113-119. Yong Jing, Wang Zheng.Capacitive characteristics of single-phase uncontrollable bridge rectifier filtering circuit[J]. Automation of Electric Power Systems, 2014, 38(10): 113-119. [6] 杨立永, 杨烁, 张卫平, 等. 单相PWM整流器改进无差拍电流预测控制方法[J]. 中国电机工程学报, 2015, 35(22): 5842-5850. Yang Liyong, Yang Shuo, Zhang Weiping, et al.The improved deadbeat predictive current control method for single-phase PWM rectifiers[J]. Proceedings of the CSEE, 2015, 35(22): 5842-5850. [7] 朱永强, 贾利虎, 谢文超, 等. 一种用于单相/三相变换的新型电力电子变换技术[J]. 电工技术学报, 2018, 33(7): 1433-1439. Zhu Yongqiang, Jia Lihu, Xie Wenchao, et al.A new power electronic transformation technology for single-phase three-phase[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1433-1439. [8] 曾正, 赵荣祥, 吕志鹏, 等. 光伏并网逆变器的阻抗重塑与谐波谐振抑制[J]. 中国电机工程学报, 2014, 34(27): 4547-4558. Zeng Zheng, Zhao Rongxiang, Lü Zhipeng, et al.Impedance reshaping of grid-tied inverters to damp the series and parallel harmonic resonances of photovoltaic systems[J]. Proceedings of the CSEE, 2014, 34(27): 4547-4558. [9] 陈新, 韦徵, 胡雪峰, 等. 三相并网逆变器LCL滤波器的研究及新型有源阻尼控制[J]. 电工技术学报, 2014, 29(6): 71-79. Chen Xin, Wei Zheng, Hu Xuefeng, et al.Research on LCL filter in three-phase grid-connected inverter and novel active damping control strategy[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 71-79. [10] 张兴, 汪杨俊, 余畅舟, 等. 采用PI+重复控制的并网逆变器控制耦合机理及其抑制策略[J]. 中国电机工程学报, 2014, 34(30): 5287-5295. Zhang Xing, Wang Yangjun, Yu Changzhou, et al.Mechanism of the control coupling and suppression strategy using PI and repetitive control in grid- connected inverters[J] Proceedings of the CSEE, 2014, 34(30): 5287-5295. [11] 黄奕毅, 贲洪奇, 王韦琦, 等. 用于单级桥式PFC变换器电压尖峰抑制的有源钳位电路[J]. 电工技术学报, 2018, 33(4): 845-855. Huang Yiyi, Ben Hongqi, Wang Weiqi, et al.Active clamp circuit applying to absorbing voltage spikes in single-stage full-bridge PFC converter[J]. Transac- tions of China Electrotechnical Society, 2018, 33(4): 845-855. [12] 周娟, 魏琛, 杨宇, 等. 逆变器简化PWM算法及抑制共模电压策略[J]. 电工技术学报, 2014, 29(8): 158-165. Zhou Juan, Wei Chen, Yang Yu, et al.Inverter simplified algorithm of PWM and voltage strategy[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 158-165. [13] 王勇, 高宁, 罗悦华, 等. 三相三电平并网逆变器无死区SPWM控制研究[J]. 中国电机工程学报, 2011, 31(21): 70-75. Wang Yong, Gao Ning, Luo Yuehua, et al.SPWM Research for dead-time elimination in a three-phase three-level grid-connected inverter[J]. Proceedings of the CSEE, 2011, 31(21): 70-75. [14] 何正义, 季学武, 瞿文龙. 一种新颖的基于死区时间在线调整的SVPWM补偿算法[J]. 电工技术学报, 2009, 24(6): 42-47. He Zhengyi, Ji Xuewu, Qu Wenlong.A novel SVPWM compensation strategy based on regulating dead time on-line[J]. Transactions of China Electro- technical Society, 2009, 24(6): 42-47. [15] 李明, 易灵芝, 彭寒梅, 等. 双BUCK光伏逆变器的定频滞环电流控制研究[J]. 湖南工业大学学报, 2008, 22(5): 32-35. Li Ming, Yi Lingzhi, Peng Hanmei, et al.Study of constant-frequency hysteresis current control in PV dual BUCK inverter[J]. Journal of Hunan University of Technology, 2008, 22(5): 32-35. [16] Munaretto L, Heldwein M L.Single-phase trans- formerless dual Buck-based grid-connected inverter[C]// IEEE Applied Power Electronics Conference and Exposition, San Antonio, TX, 2018: 161-166. [17] 周奖, 陆翔, 龚仁喜. 基于交错并联Boost PFC的整流器设计[J]. 科学技术与工程, 2013, 13(7): 1961-1964. Zhou Jiang, Lu Xiang, Gong Renxi.Design for rectifier based on interleaved Boost PFC[J]. Science Technology and Engineering, 2013, 13(7): 1961-1964. [18] 嵇保健, 洪峰. 半周控制双Buck-Boost单级逆变器[J]. 电工技术学报, 2011, 26(11): 53-60. Ji Baojian, Hong Feng.Half load-cycle worked dual Buck-Boost single-stage inverter[J]. Transactions of China Electrotechnical Society, 2011, 26(11): 53-60. [19] 彭咏龙, 朱劲波, 李亚斌. 基于电感电压反馈和输入整形技术的LC滤波器混合阻尼控制[J]. 电力系统保护与控制, 2015, 43(2): 103-107. Peng Yonglong, Zhu Jinbo, Li Yabin.Hybrid damping control based on the LC filter inductor voltage feedback and input shaping techniques[J]. Power System Protection and Control, 2015, 43(2): 103-107. [20] 张宪平, 李亚西, 潘磊, 等. 三相电压型整流器的LCL型滤波器分析与设计[J]. 电气应用, 2007, 26(5): 65-68. Zhang Xianping, Li Yaxi, Pan Lei, et al.Analysis and design of LCL type filter for three-phase voltage source rectifier[J]. Electrotechnical Application, 2007, 26(5): 65-68. [21] 刘飞, 查晓明, 段善旭. 三相并网逆变器LCL滤波器的参数设计与研究[J]. 电工技术学报, 2010, 25(3): 110-116. Liu Fei, Zha Xiaoming, Duan Shanxu.Design and research on parameter of LCL filter in three-phase grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 110-116. |
|
|
|