|
|
Droop Control Strategy of Parallel Inverters Based on Port Voltage Integration and Variable Droop Coefficient |
Xie Qinyuan, Wang Ruitian, Lin Kewen, Fan Xuexin, Yang Guorun |
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract When inverters are paralleled using the traditional droop method in the isolated island microgrid, the difference between inverter output impedance and line impedance leads to the problem of unequal reactive power distribution and over-migration of output voltage. It is necessary to rationally configure the output impedance of the inverter and reconstruct the droop controller to meet the requirements of the inverter parallel index. The equivalent model of two paralleled inverters was established. The power distribution characteristics of the parallel system and droop control equations corresponding to different impedance angles were analyzed. Active power frequency droop and reactive power voltage droop were mainly realized based on inductive output impedance in this paper. In steady-state, the frequency of each inverter in the parallel system was consistent, so the active power can be evenly divided. There was no integration link in voltage droop, so the reactive power was unequal when the line impedance was not consistent. The causes of voltage drop in traditional droop control were revealed, including the drop caused by droop control and output impedance. Aiming at the problem of uneven reactive power distribution caused by line impedance differences and output voltage drop exceeding the standard caused by output impedance and droop control, a droop control strategy based on port voltage integration and variable droop coefficient was proposed. Firstly, the active power and reactive power were decoupling by designing the output inductor parameter and the voltage and current double-loop control parameters, so that the P-ω/Q-V droop control equation was applicable to the inverter. Secondly, the power droop controller was redesigned. The integral term of the difference between the output reactive power and the average reactive power was added to the conventional output voltage-reactive power droop equation. Two inverter output port voltage, current and its reactive power was calculated, at the same time the use of digital communication its reactive power was sent to the other inverter, reactive power real-time calculated average, through the average error of the reactive power and reactive power regulation droop coefficient, compensation inverter due to inconsistent line impedance between reactive power differences. The integral term of the difference between the output port voltage and the rated voltage was added to the droop equation, which was used to suppress the port voltage drop and stabilize the port voltage within the allowable offset range. Finally, the traditional droop control, virtual impedance droop control and the droop control strategy proposed in this paper were compared by simulation and experiment. The results show that the reactive power cannot be evenly divided due to the difference of line impedance in the traditional droop control, and the port output voltage drop was serious. Although the virtual impedance method can achieve equal division of reactive power, the output voltage still drops seriously, exceeding the ±5% requirement. The inverter parallel control method proposed in this paper can ensure equal active power division and control the difference of reactive power distribution within 5%, improve the equal division of reactive power, and maintain the inverter output voltage offset rate within ±5% of the rated output voltage.
|
Received: 30 October 2021
|
|
|
|
|
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904. Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang, et al.Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904. [2] 支娜, 丁可, 黄庆辉, 等. 基于P-U下垂特性的虚拟直流电机控制策略[J]. 电工技术学报, 2021, 36(6): 1238-1248. Zhi Na, Ding Ke, Huang Qinghui, et al.A Virtual DC motor control strategy based on P-U drooping characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(6): 1238-1248. [3] 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-22. Wang Chengshan, Wu Zhen, Li Peng.Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-22. [4] 王晓寰, 张旭东, 郭红强. 基于相位簇扰动的下垂控制并网逆变器孤岛检测[J]. 电工技术学报, 2020, 35(8): 1728-1738. Wang Xiaohuan, Zhang Xudong, Guo Hongqiang.Islanding detection of droop-controlled grid-connected inverters on phase cluster disturbance[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1728-1738. [5] 周晖, 王跃, 李明烜, 等. 孤岛并联虚拟同步发电机暂态功率分配机理分析与优化控制[J]. 电工技术学报, 2019, 34(增刊2): 654-663. Zhou Hui, Wang Yue, Li Mingxuan, et al.Analysis and optiomal control of transient active power sharing between islanded parallel virtual synchronous generators[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 654-663. [6] 梁海峰, 郑灿, 高亚静, 等. 微电网改进下垂控制策略研究[J]. 中国电机工程学报, 2017, 37(17): 4901-4910. Liang Haifeng, Zheng Can, Gao Yajing, et al.Research on improved droop control strategy for micro-grid[J]. Proceedings of the CSEE, 2017, 37(17): 4901-4910. [7] 房志学, 苏建徽, 王华锋, 等. 微电网逆变器低电压穿越控制策略[J]. 电力系统自动化, 2019, 43(2): 143-149. Fang Zhixue, Su Jianhui, Wang Huafeng, et al.Low voltage ride-through control strategy of microgrid inverter[J]. Automation of Electric Power Systems, 2019, 43(2): 143-149. [8] Mohd A, Ortjohann E, Morton D, et al.Review of control techniques for inverters parallel operation[J]. Electric Power Systems Research, 2010, 80(12): 1477-1487. [9] 曹文远, 韩民晓, 谢文强, 等. 交直流配电网逆变器并联控制技术研究现状分析[J]. 电工技术学报, 2019, 34(20): 4226-4241. Cao Wenyuan, Han Minxiao, Xie Wenqiang, et al.Analysis on research status of parallel inverters control technologies for AC/DC distribution network[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4226-4241. [10] 刘彦呈, 庄绪州, 张勤进, 等. 基于虚拟频率的直流微电网下垂控制策略[J]. 电工技术学报, 2021, 36(8): 1693-1702. Liu Yancheng, Zhuang Xuzhou, Zhang Qinjin, et al.A virtual current-frequency droop control in DC microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1683-1702. [11] Tuladhar A, Jin H, Unger T, et al.Control of parallel inverters in distributed AC power systems with consideration of line impedance effect[J]. IEEE Transactions on Industry Applications, 2000, 36(1): 131-138. [12] Guerrero J M, Matas J, Castilla M.Wireless-control strategy for parallel operation of distributed generation inverters[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1461-1470. [13] 陈杰, 刘名凹, 陈新, 等. 基于下垂控制的逆变器无线并联与环流抑制技术[J]. 电工技术学报, 2018, 33(7): 1450-1460. Chen Jie, Liu Mingao, Chen Xin, et al.Wireless parallel and circulation current reduction of droop-controlled inverters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1450-1460. [14] 林燎源, 林钊, 刘伟, 等. 基于阻性下垂的逆变器无线并联均流控制[J]. 电工技术学报, 2016, 31(8): 43-50. Lin Liaoyuan, Lin Zhao, Liu Wei, et al.Wireless current sharing scheme for parallel operation of inverters using resistive output impedance[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 43-50. [15] 苏虎, 曹炜, 孙静, 等. 基于改进下垂控制的微电网协调控制策略[J]. 电力系统保护与控制, 2014, 42(11): 92-98. Su Hu, Cao Wei, Sun Jing, et al.Micro-grid coordinated control strategy based on improved droop control[J]. Power System Protection and Control, 2014, 42(11) : 92-98. [16] 闫俊丽, 彭春华, 陈臣. 基于动态虚拟阻抗的低压微电网下垂控制策略[J]. 电力系统保护与控制, 2015, 43(21): 1-6. Yan Junli, Peng Chunhua, Chen Chen.Droop control strategy based on dynamic virtual impedance in low-voltage microgrid[J]. Power System Protection and Control, 2015, 43(21): 1-6. [17] 张波, 李冬雪, 颜湘武, 等. 基于坐标变换的微源逆变器虚拟复阻抗功率分配方法[J]. 电工技术学报, 2019, 34(增刊1): 212-223. Zhang Bo, Li Dongxue, Yan Xiangwu, et al.Virtual complex impedance power distribution method for micro-source inverter based on coordinate transfor-mation[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 212-223. [18] 王灿, 邓灿, 潘学伟, 等. 基于线路阻抗补偿的互联变流器控制策略[J]. 电力系统自动化, 2021, 45(18): 141-150. Wang Can, Deng Can, Pan Xuewei, et al.Control strategy for interlinking converter based on line impedance compensation[J]. Automation of Electric Power Systems, 2021, 45(18): 141-150. [19] 陈巧地, 张兴, 李明, 等. 基于阻抗辨识的下垂控制并网逆变器孤岛检测方法[J]. 电力系统自动化, 2020, 44(7): 123-129. Chen Qiaodi, Zhang Xing, Li Ming, et al.Impedance identification based islanding detection method for grid-connected inverter with droop control[J]. Automation of Electric Power Systems, 2020, 44(7): 123-129. [20] 陈晓祺, 贾宏杰, 陈硕翼, 等. 基于线路阻抗辨识的微电网无功功率均分改进下垂控制策略[J]. 高电压技术, 2017, 43(4): 1271-1279. Chen Xiaoqi, Jia Hongjie, Chen Shuoyi, et al.Improved droop control strategy based on line impedance identification for reactive power sharing in microgrid[J]. High Voltage Engineering, 2017, 43(4): 1271-1279. [21] 柴秀慧, 张纯江, 柴建国, 等. 改进互联通信荷电状态下垂控制及功率均衡优化[J]. 电工技术学报, 2021, 36(16): 3365-3374. Chai Xiuhui, Zhang Chunjiang, Chai Jianguo, et al.Improved interconnected communication state of charge droop control and power balance optimization[J]. Transactions of China Electrotechnical Society, 2021, 36(26): 3365-3374. [22] Mahmood H, Michaelson D, Jiang J.Accurate reactive power sharing in an islanded micro-grid using adaptive virtual impedances[J], IEEE Transactions on Power Electronics, 2015, 30(3): 1605-1617. [23] Mahmood H, Michaelson D, Jiang J.Reactive power sharing in islanded microgrids using adaptive voltage droop control[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 3052-3060. [24] 吕志鹏, 罗安. 不同容量微源逆变器并联功率鲁棒控制[J]. 中国电机工程学报, 2012, 32(12): 35-42. Lü Zhipeng, Luo An.Robust power control of paralleled micro-source inverters with different power ratings[J]. Proceedings of the CSEE, 2012, 32(12): 35-42. [25] 陈燕东, 罗安, 龙际根, 等. 阻性逆变器并联环流分析及鲁棒下垂多环控制[J]. 中国电机工程学报, 2013, 33(18): 18-29. Chen Yandong, Luo An, Long Jigen, et al.Circulating current analysis and robust droop multiple loop control method for parallel inverters using resistive output impedance[J]. Proceedings of the CSEE, 2013, 33(18): 18-29. [26] 程启明, 高杰, 程尹曼, 等. 一种适用于孤岛运行的逆变器控制方法[J]. 电网技术, 2018, 42(1): 203-209. Cheng Qiming, Gao Jie, Cheng Yiman, et al.An inverter control method for islanding operation[J]. Power System Technology, 2018, 42(1): 203-209. [27] He Jinwei, Li Yunwei.An enhanced microgrid load demand sharing strategy[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 3984-3995. [28] 支娜, 丁可, 黄庆辉, 等. 一种无需高带宽通信线路的高精度自主均流控制策略[J]. 电工技术学报, 2021, 36(16): 3375-3385. Zhi Na, Ding ke, Huang Qinghui, et al. An high precision autonomous current sharing control strategy without high bandwidth communication line[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3375-3385. [29] 韩华, 刘尧, 孙尧, 等. 一种微电网无功功率均分的改进控制策略[J]. 中国电机工程学报, 2014, 34(16): 2639-2648. Han Hua, Liu Yao, Sun Yao, et al.An improved control strategy for reactive power sharing in microgrids[J]. Proceedings of the CSEE, 2014, 34(16): 2639-2648. [30] 谢玲玲, 时斌, 华国玉, 等. 基于改进下垂控制的分布式电源并联运行技术[J]. 电网技术, 2013, 37(4): 992-998. Xie Lingling, Shi Bin, Hua Guoyu, et al.Parallel operation technology of distributed generations based on improved droop control[J]. Power System Technology, 2013, 37(4): 992-998. [31] 中国机械业联合会. GB50052—2009供配电系统设计规范[S]. 北京: 中国计划出版社, 2009. [32] 全国电压电流等级和频率标准化技术委员会(TC1)和全国电磁兼容标准化技术委员会(TC246). GB/T 12325-200 电能质量供电电压偏差[S]. 北京: 中国标准出版社, 2008. |
|
|
|