|
|
Nonlinear Thermal Network Model and Parameter Identification Method for Junction Temperature Estimation of Discrete Power MOSFET |
Wan Meng, Ying Zhanfeng, Zhang Wei |
School of Energy and Power Engineering Nanjing University of Science and TechnologyNanjing 210094 China |
|
|
Abstract Discrete power MOSFET is an important kind of power electronic device and its safe operation is heavily dependent on the junction temperature estimation. Traditional junction temperature estimation model has high requirement for reliability of case-temperature sensor installation, since the measured case temperature of power device is used as the boundary condition of junction temperature estimation. Therefore, the estimated junction temperature of traditional model could be unreliable, when the temperature sensor falls off from the discrete power MOSFET whose package size is relatively small. To address this, a nonlinear thermal network model for junction estimation of discrete power MOSFET was proposed in this paper. In the proposed model, the ambient temperature of power MOSFET, which can be measured more reliably, was used as the boundary condition of junction temperature estimation. The nonlinear heat convection and heat radiation were taken account into the proposed model to describe the heat transfer between the power MOSFET and ambient space. In order to determine the thermal parameters in the proposed model, a parameter identification method was presented. The objective function in this identification method was mathematically proved to be a convex function and the prime-dual interior point method was employed to obtain the globally optimal solution of objective function. Several experiments indicate that the proposed model can improve the reliability of discrete power MOSFET junction temperature estimation when case temperature measurement is not reliable.
|
Received: 14 January 2019
Published: 28 June 2019
|
|
|
|
|
[1] Zeng Guang, Borucki Ludger, Oliver Wenzel, et al.First results of development of a lifetime model for transfer molded discrete power devices[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2018: 706-713. [2] Dusmez S, Ali S H, Heydarzadeh M, et al.Aging precursor identification and lifetime estimation for thermally aged discrete package silicon power switches[J]. IEEE Transactions on Industry Appli- cations, 2017, 53(1): 251-260. [3] 任磊, 沈茜, 龚春英. 电力电子电路中功率晶体管结温在线测量技术研究现状[J]. 电工技术学报, 2018, 33(8): 1750-1761. Ren Lei, Shen Qian, Gong Chunying.Current junction temperature online measurement techniques of power transistors in power electronic converters[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1750-1761. [4] 方化潮, 郑利兵, 王春雷, 等. IGBT模块栅极电压米勒平台时延与结温的关系[J]. 电工技术学报, 2016, 31(8): 134-141. Fang Huachao, Zheng Libing, Wang Chunlei, et al.The relationship between junction temperature and time delay of gate voltage miller plateau of IGBT module[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 134-141. [5] 祝冲冲, 王详, 罗皓泽, 等. 基于热敏感电参数法的大容量IGBT模块动态结温在线检测研究[J]. 电工技术学报, 2017, 37(9): 2686-2693. Zhu Chongchong, Wang Xiang, Luo Haoze, et al.Dynamical junction temperature online extraction with thermal sensitive electrical parameters for high power IGBT modules[J]. Transactions of China Electrotechnical Society, 2017, 37(9): 2686-2693. [6] Baker N, Liserre M, Dupont L, et al.Improved reliability of power modules: a review of online junction temperature measurement methods[J]. IEEE Industrial Electronics Magazine, 2014, 8(3): 17-27. [7] Avenas Y, Dupont L, Khatir Z, et al.Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters—a review[J]. IEEE Transactions on Power Electronics, 2012, 27(6): 3081-3092. [8] 刘宾礼, 罗毅飞, 肖飞, 等. 基于传热动力学作用特征的IGBT结温预测数学模型[J]. 电工技术学报, 2017, 32(12): 79-87. Liu Binli, Luo Yifei, Xiao Fei, et al.Junction temperature prediction mathematical model of IGBT based on the characteristics of thermal dynamics[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 79-87. [9] 熊诗成, 鲁军勇, 郑宇锋, 等. 基于各层材料传热特性的晶闸管结温计算等效电路模型[J]. 中国电机工程学报, 2018, 38(4): 1157-1164. Xiong Shicheng, Lu Junyong, Zheng Yufeng, et al.Equivalent circuit model based on the heat transfer characteristics of each layer for pulsed power thyristor junction temperature calculation[J]. Pro- ceedings of the CSEE, 2018, 38(4): 1157-1164. [10] 杜雄, 李高显, 吴军科, 等. 一种用于风电变流器可靠性评估的结温数值计算方法[J]. 中国电机工程学报, 2015, 35(11): 2813-2821. Du Xiong, Li Gaoxian, Wu Junke, et al.A junction temperature numerical calculation method for reliability evaluation in wind power converters[J]. Proceedings of the CSEE, 2015, 35(11): 2813-2821. [11] 李辉, 秦星, 薛宏涛, 等. 双馈风电机组变流器IGBT结温计算与稳态分析[J]. 电机与控制学报, 2015, 19(8): 62-69. Li Hui, Qin Xing, Xue Hongtao, et al.Calculation and analysis of IGBT steady junction temperature of power converter for doubly fed wind turbine generator system[J]. Electric Machines and Control, 2015, 19(8): 62-69. [12] 姚芳, 胡洋, 李静, 等. 基于结温监测的风电IGBT热安全性和寿命损耗研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Jing, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. [13] 陈明, 胡安, 唐勇, 等. 绝缘栅双极型晶体管传热模型建模分析[J]. 高电压技术, 2011, 37(2): 453-459. Chen Ming, Hu An, Tang Yong, et al.Modeling analysis of IGBT thermal model[J]. High Voltage Engineering, 2011, 37(2): 453-459. [14] Ammous A, Ghedira S, Allard B, et al.Choosing a thermal model for electrothermal simulation of power semiconductor devices[J]. IEEE Transactions on Power Electronics, 1999, 14(2): 300-307. [15] 周雒维, 王博, 张益, 等. 非平稳工况下功率半导体器件结温管理技术综述[J]. 中国电机工程学报, 2018, 38(8): 2394-2407. Zhou Luowei, Wang Bo, Zhang Yi, et al.Review on junction temperature management of power semi- conductor devices under power fluctuation con- dition[J]. Proceedings of the CSEE, 2018, 38(8): 2394-2407. [16] Aadresen M, Liserre M.Impact of active thermal management on power electronics design[J]. Micro- electronics Reliability, 2014, 54(9-10): 1935-1939. [17] Dong Yufei, Yang Heya, Li Wuhua.Neutral-point- shift-based active thermal control for a modular multilevel converter under a single-phase-to ground fault[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2474-2484. [18] Lemmens J, Vanassche P, Driesen J.Optimal control of traction motor drives under electrothermal con- straints[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(2): 249-263. [19] Gurpinar E, Castellazzi A.Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETS and GaN HEMTs[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7148-7160. [20] Wang Ze, Tian Bo, Qiao Wei, et al.Real-time aging monitoring for IGBT modules using case temper- ature[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1168-1178. [21] Weckert Marco, Roth-Stielow J.Lifetime as a control variable in power electronic systems[C]//Emobility- Electrical Power Train, Leipzig, Germany, 2010, DOI: 10.1109/EMOBILITY, 2010. 56688049. [22] Henfer A R, Blackburn D L.Simulating the dynamic electro-thermal behavior of power electronic circuits and systems[J]. IEEE Transactions on Power Elec- tronics, 1993, 8(4): 376-385. [23] Rodriguez J J, Parrilla Z, Velez-Reyes M, et al.Thermal component models for electro-thermal analysis of multichip power modules[C]//In Pro- ceedings of IEEE Industry Application Society Annual Meeting, Pittsburgh, USA, 2002: 234-241. [24] Ellison G N.Thermal computations for electronics: conductive, radiative, and convective air cooling[M]. New York: CRC Press, 2011. [25] Texas Instruments.Analyzing power dissipation and circuit design for the bqSWITCHERTM synchronous switching battery charger[Z]. TX, SLUA345-August, 2005. [26] Graovac D, Purschel M.IGBT power losses calcu- lation using the data-sheet parameters[Z]. Infineon Technologies AG, Neubiberg, Germany, 2009. [27] 万萌, 应展烽, 张旭东, 等. 功率器件集总参数热路模型及其参数提取研究[J]. 电工技术学报, 2015, 30(21): 31-38. Wan Meng, Ying Zhanfeng, Zhang Xudong, et al.Research on the lumped parameter thermal circuit model and the parameter extraction method of power devices[J]. Transactions of China Electrotechnical Society, 2015, 30(21): 31-38. [28] 马昌凤, 最优化方法及其Matlab程序设计[M]. 北京: 科学出版社, 2010. [29] 刘立阳, 吴军基, 孟绍良. 基于预测控制的含风电滚动优化调度[J]. 电工技术学报, 2017, 32(17): 75-83. Liu Liyang, Wu Junji, Meng Shaoliang.A rolling dispatch model for wind power integrated power system based on predictive control[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 75-83. [30] 郑伟业, 吴文传, 张伯明, 等. 基于内点法的交直流混联系统抗差状态估计[J]. 电力系统保护与控制, 2014, 42(21): 1-8. Zheng Weiye, Wu Wenchuan, Zhang Boming, et al.Robust state estimator for AC/DC hybrid power system based on an interior point method[J]. Power System Protection and Control, 2014, 42(21): 1-8. [31] Infineon datasheet, IRFB4410PbF, 2004. |
|
|
|