|
|
DC-Offset Elimination Method for Grid-Connected Phase-Locked Loop Based on Complex Notch Filter |
Hui Nanmu1, Wang Dazhi1, Li Yunlu2 |
1. School of Information Science and Engineering Northeastern University Shenyang 110819 China; 2. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract In the three-phase grid-connected applications under ideal grid conditions, the synchronous reference frame phase-locked loop (SRF-PLL) is the most common synchronization technique. However, the presence of a DC offset can cause fundamental oscillation errors in the phase estimation. The common method to solve this problem is to use notch filter (NF) or delayed signal cancellation (DSC) in SRF-PLL, but these methods will reduce the dynamic response speed of the system. In this paper, based on the complex domain analysis of the multi-complex-coefficient filter (MCCF), a fast DC offset rejection method using a complex notch filter (DCCNF) for three-phase PLL is proposed, and the parameter design guidelines of the proposed PLL are given. The proposed new DCCNF-based PLL has a fast response speed and good DC offset elimination performance. The simulation and experimental results verify the effectiveness of the proposed method.
|
Received: 20 October 2017
Published: 29 December 2018
|
|
|
|
|
[1] Golestan S, Guerrero J, Vidal A, et al.Small-signal modeling, stability analysis and design optimi- zation of single-phase delay-based PLLs[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3517-3527. [2] 马燕峰, 刘海航, 俞人楠, 等. 考虑锁相环的双馈风力发电机组无源控制[J]. 电工技术学报, 2017, 32(24): 224-232.Ma Yanfeng, Liu Haihang, Yu Rennan, et al. Passivity-based control for doubly-fed induction generator considering the phase-locked loop[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 224-232. [3] 张学广, 付志超, 陈文佳, 等. 弱电网下考虑锁相环影响的并网逆变器改进控制方法[J]. 电力系统自动化, 2018, 42(7): 1-7.Zhang Xueguang, Fu Zhichao, Chen Wenjia, et al. An improved control method for grid-connected inverters considering impact of phase-locked loop under weak grid condition[J]. Automation of Electric Power Systems, 2018, 42(7): 1-7. [4] 王赟程, 陈新, 张旸, 等. 三相并网逆变器锁相环频率特性分析及其稳定性研究[J]. 中国电机工程学报, 2017, 37(13): 3843-3853.Wang Yuncheng, Chen Xin, Zhang Yang, et al. Frequency characteristics analysis and stability research of phase locked loop for three-phase grid- connected inverters[J]. Proceedings of the CSEE, 2017, 37(13): 3843-3853. [5] 熊凌飞, 韩民晓, 姚蜀军. 锁相环对多端柔性直流稳定性作用分析及参数选择研究[J]. 电工技术学报, 2015, 30(16): 203-212.Xiong Lingfei, Han Minxiao, Yao Shujun. Influence of PLL on the stability analysis of VSC-MTDC and parameter selection[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 203-212. [6] 刘闯, 潘岱栋, 蔡国伟, 等. 适合低压配电网分布式发电的抗谐波干扰型增强锁相环路技术[J]. 电工技术学报, 2016, 31(10): 185-192.Liu Chuang, Pan Daidong, Cai Guowei. Enhanced phased-locked loop technology with anti harmonic interference capability for distributed generation in low-voltage distribution[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 185-192. [7] 史梦思, 钱丽萍, 岳云涛, 等. 三相逆变电源的锁相环设计[J]. 电工技术学报, 2015, 30(增刊1): 93- 97.Shi Mengsi, Qian Liping, Yue Yuntao, et al. Phase- locked loop designing of three phase inverter power[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 93-97. [8] 何宇, 漆汉宏, 邓超, 等. 一种嵌入重复控制内模的三相锁相环的设计与实现[J]. 电工技术学报, 2016, 31(22): 83-91.He Yu, Qi Hanhong, Deng Chao, et al. A novel three-phase phase-locked loop method based on internal model of repetitive control[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 83-91. [9] Karimi Ghartemani M, Khajehoddin S, Jain P, et al.Addressing DC component in PLL and notch filter algorithms[J]. IEEE Transactions on Power Elec- tronics, 2012, 27(7): 78-86. [10] Hwang S, Liu L, Li H, et al.DC offset error compensation for synchronous reference frame PLL in single-phase grid-connected converters[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3467-3471. [11] Kulkarni A,John V.Design of synchronous reference frame phase locked loop with the presence of dc offsets in the input voltage[J]. IET Power Electronics, 2015, 8(12): 2435-2443. [12] Li Yunlu, Wang Dazhi, Ning Yi, et al.DC-offset elimination method for grid synchronisation[J]. Electronics Letters, 2017, 53(5): 335-337. [13] Luo Suhua, Wu Fengjiang.Improved two-phase stationary frame EPLL to eliminate the effect of input harmonics, unbalance, and DC offsets[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2855-2863. [14] Wu Fengjiang, Zhang Lujie, Duan Jiandong, et al.Effect of adding DC-offset estimation integrators in there-phase enhanced phase-locked loop on dynamic performance and alternative scheme[J]. IET Power Electronics, 2015, 8(3): 391-400. [15] Wang Jinyu, Liang Jun, Gao Feng, et al.A method to improve the dynamic performance of moving average filter-based PLL[J]. IEEE Transactions on Power Electronics, 2015, 30(10): 5978-5990. [16] Ma Cao, Gao Feng, He Guoqing, et al.Fast DC component suppression method for phase locked loop[C]//Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 2014: 2700-2705. [17] Golestan S, Guerrero J M, Gharehpetian G.Five approaches to deal with problem of DC offset in phase-locked loop algorithms: design considerations and performance evaluations[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 648-660. [18] Golestan S, Monfared M, Freijedo F D.Design- oriented study of advanced synchronous reference frame phase-locked loops[J]. IEEE Transactions on Power Electronics, 2013, 28(2): 765-778. [19] Gonzalez-Espin F, Figueres E, Garcera G.An adap- tive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid[J]. IEEE Transactions on Industrial Electronics, 2012, 59(6): 2718-2731. [20] Li Weiwei, Ruan Xinbo, Bao Chenlei, et al.Grid synchronization systems ofthree-phase grid-connected power converters: a complex-vector-filter perspective[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1855-1870. [21] Varga A.Balancing free square-root algorithm for computing singular perturbation approximations[C]// Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, 1991: 1062-1065. |
|
|
|