|
|
Fast Frequency Regulation Strategy of PV Power System Assisted by Energy Storage Based on Improved Measurement Method of RoCoF |
Jia Jiaoxin1, Yan Xiangwu1, Li Tiecheng2, Wang Yuke1, Ma Hongbin1 |
1. Key Laboratory of Distributed Energy Storage and Micro-Grid of Hebei Province orth China Electric Power University Baoding 071003 China; 2. State Grid Hebei Electric Power Research Institute Shijiazhuang 050021 China |
|
|
Abstract Large-scale photovoltaic (PV) grid-connected power generation causes a power system to face the problem of inertia decline and insufficient frequency regulation capability. Although the current scheme of active power reserve (APR) can meet the needs participating in primary frequency regulation, it is difficult to provide inertia support and the operation of abandoned solar energy will affect generation benefits. Accordingly, a coordinated control strategy of virtual inertia and primary frequency regulation for energy-storage assisted PV system is proposed. The proposed strategy reduces energy storage capacity by half without losing power generation benefits. The primary frequency regulation is accomplished by the means that variable power point tracking (VPPT) responses frequency’s up disturbance and energy storage equipment responses frequency’s down disturbance. Moreover, energy storage device is used for inertia support control. The essential reason of inertia-power sag caused by the measurement of rate of change of frequency (RoCoF) is revealed through mathematical modeling, and a method to correct the measurement value of RoCoF by the first-order high-pass link is proposed to improve the inertia control effect. The control effects of the proposed strategy and the APR strategy are compared and analyzed in simulation example of microgrid. The results show that the coordinated strategy has better performance.
|
Received: 29 April 2021
|
|
|
|
|
[1] 刘辉, 葛俊, 巩宇, 等. 风电场参与电网一次调频最优方案选择与风储协调控制策略研究[J]. 全球能源互联网, 2019, 2(1): 44-52. Liu Hui, Ge Jun, Gong Yu, et al.Wind farm participation in grid primary frequency optimization scheme selection and wind storage coordination control strategy research[J]. Global Energy Internet, 2019, 2(1): 44-52. [2] 习近平. 在气候雄心峰会上的讲话[Z].中华人民共和国国务院公报, 2020(35): 7. [3] 颜湘武, 吕佳伟, 贾焦心, 等. 双级式有功备用光伏虚拟同步机控制策略[J]. 电力系统保护与控制, 2020, 48(15): 61-68. Yan Xiangwu, Lü Jiawei, Jia Jiaoxin, et al.Two-stage active standby photovoltaic virtual synchronous machine control strategy[J]. Power System Protection and Control, 2020, 48(15): 61-68. [4] 张海峥, 张兴, 李明, 等. 基于变步长功率跟踪的有功备用式PV-VSG控制策略[J]. 电力系统自动化, 2019, 43(5): 92-104. Zhang Haizheng, Zhang Xing, Li Ming, et al.Control strategy of PV-VSG in active power reserve mode based on power tracking with variable step[J]. Automation of Electric Power Systems, 2019, 43(5): 92-104. [5] 钟诚, 周顺康, 严干贵, 等. 基于变减载率的光伏发电参与电网调频控制策略[J]. 电工技术学报, 2019, 34(5): 1013-1024. Zhong Cheng, Zhou Shunkang, Yan Gangui, et al.A new frequency regulation control strategy for photovoltaic power plant based on variable power reserve level control[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1013-1024. [6] Papadopoulos A M.Renewable energies and storage in small insular systems: potential, perspectives and a case study[J]. Renewable Energy, 2019, 149(2020): 103-114. [7] Perdana Y S, Muyeen S M, Al-Durra A, et al.Direct connection of supercapacitor-battery hybrid storage system to the grid-tied photovoltaic system[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1370-1379. [8] 马伟, 王玮, 吴学智, 等. 平抑光伏并网功率波动的混合储能系统优化调度策略[J].电力系统自动化, 2019, 43(3): 58-66. Ma Wei, Wang Wei, Wu Xuezhi, et al.Optimal dispatching strategy of hybrid energy storage system for smoothing power fluctuation caused by grid-connected photovoltaic[J]. Automation of Electric Power Systems, 2019, 43(3): 58-66. [9] 张纯江,董杰,刘君,等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 334-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al.A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 334-340. [10] 曾正, 邵伟华, 冉立, 等. 虚拟同步发电机的模型及储能单元优化配置[J]. 电力系统自动化, 2015, 39(13): 22-31. Zeng Zheng, Shao Weihua, Ran Li, et al.Mathematical model and strategic energy storage of virtual synchronous generators[J]. Automation of Electric Power Systems, 2015, 39(13): 22-31. [11] 涂春鸣, 兰征, 肖凡, 等. 具备同步电机特性的级联型光伏发电系统[J]. 中国电机工程学报, 2017, 37(2): 433-444. Tu Chunming, Lan Zheng, Xiao Fan, et al.Study on cascaded H-bridge photovoltaic power systems with synchronous generator characteristics[J]. Proceedings of the CSEE, 2017, 37(2): 433-444. [12] 高建瑞, 李国杰, 汪可友, 等. 考虑储能充放电功率限制的并网光储虚拟同步机控制[J]. 电力系统自动化, 2020, 44(4): 134-141. Gao Jianrui, Li Guojie, Wang Keyou, et al.Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit[J]. Automation of Electric Power Systems, 2020, 44(4): 134-141. [13] 温烨婷, 戴瑜兴, 毕大强, 等. 一种电网友好型光储分布式电源控制策略[J]. 中国电机工程学报, 2017, 37(2): 464-475. Wen Yeting, Dai Yuxing, Bi Daqiang, et al.A grid friendly PV/BESS distributed generation control strategy[J]. Proceedings of the CSEE, 2017, 37(2): 464-475. [14] 巩宇, 李娜, 刘喜梅. 考虑弃光损失的并网光伏电站储能容量配置方法[J]. 华北电力技术, 2017(10): 33-37. Gong Yu, Li Na, Liu Ximei.Configuration method for capacity of energy storage in PV station considering wind power curtailment[J]. North China Electric Power, 2017(10): 33-37. [15] 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33(增刊2): 538-545. Chen Wenqian, Xin Xiaonan, Cheng Zhiping.Control of grid-connected of photovoltaic system with storage based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 538-545. [16] 王振雄, 易皓, 卓放, 等. 应用于光伏微网的一种虚拟同步发电机结构及其动态性能分析[J]. 中国电机工程学报, 2017, 37(2): 444-454. Wang Zhenxiong, Yi Hao, Zhuo Fang, et al.A hardware structure of virtual synchronous generator in photovoltaic microgrid and its dynamic performance analysis[J]. Proceedings of the CSEE, 2017, 37(2): 444-454. [17] 刘国宇, 蔺圣杰, 吴鸣, 等. 虚拟同步机示范工程综述[J]. 供用电, 2019, 36(4): 37-42. Liu Guoyu, Lin Shengjie, Wu Ming, et al.Summary of virtual synchronous machine technology demonstration project[J]. Distribution & Utilization, 2019, 36(4): 37-42. [18] Tafti H D, Konstantinou G, Townsend C D, et al.Extended functionalities of photovoltaic systems with flexible power point tracking: recent advances[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 9342-9356. [19] Tafti H D, Sangwongwanich A, Yang Y, et al.An adaptive control scheme for flexible power point tracking in photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5451-5463. [20] Sangwongwanich A, Yang Y, Sera D, et al.Delta power control strategy for multistring grid-connected PV inverters[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3862-3870. [21] Sangwongwanich A, Yang Y, Blaabjerg F.A sensorless power reserve control strategy for two-stage grid-connected PV systems[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8559-8569. [22] 郑天文, 陈来军, 刘炜, 等. 考虑源端动态特性的光伏虚拟同步机多模式运行控制[J]. 中国电机工程学报, 2017, 37(2): 454-464. Zheng Tianwen, Chen Laijun, Liu Wei, et al.Multimode operation control for photovoltaic virtual synchronous generator considering the dynamic characteristics of primary source[J]. Proceedings of the CSEE, 2017, 37(2): 454-464. [23] 张海峥, 张兴, 李明, 等. 一种有功备用式光伏虚拟同步控制策略[J]. 电网技术, 2019, 43(2): 514-520. Zhang Haizheng, Zhang Xing, Li Ming, et al.A photovoltaic virtual synchronous generator control strategy based on active power reserve[J]. Power System Technology, 2019, 43(2): 514-520. [24] 王淑超, 孙光辉, 俞诚生, 等. 光伏发电系统级快速功率调控技术及其应用[J]. 中国电机工程学报, 2018, 38(21): 6254-6263. Wang Shuchao, Sun Guanghui, Yu Chengsheng, et al.Photovoltaic power generation system level rapid power control technology and its application[J]. Proceedings of the CSEE, 2018, 38(21): 6254-6263. [25] Omran W A, Kazerani M, Salama M M A. Investigation of methods for reduction of power fluctuations generated from large grid-connected photovoltaic systems[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 318-327. [26] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [27] Bose U, Chattopadhyay S K, Chakraborty C.A novel method of frequency regulation in microgrid[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 111-121. [28] Ghartemani M K, Khajehoddin S A, Jain P K, et al.Problems of startup and phase jumps in PLL systems[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1830-1838. [29] 赵婷, 吕志鹏, 刘国宇, 等. 虚拟同步机技术系列标准解读[J]. 供用电, 2019, 36(4): 13-17, 36. Zhao Ting, Lü Zhipeng, Liu Guoyu, et al.Interpretation of virtual synchronous machine technology series standards[J]. Distribution & Utilization, 2019, 36(4): 13-17, 36. [30] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. Ma Zhihui, Li Xinran, Tan Zhuangxi, et al.Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. [31] 季宇, 熊雄, 寇凌峰, 等. 基于经济运行模型的储能系统投资效益分析[J]. 电力系统保护与控制, 2020, 48(4): 143-150. Ji Yu, Xiong Xiong, Kou Lingfeng, et al.Analysis of energy storage system investment benefit based on economic operation model[J]. Power System Protection and Control, 2020, 48(4): 143-150. [32] Fang Jingyang, Zhang Ruiqi, Li Hongchang, et al.Frequency derivative-based inertia enhancement by grid-connected power converters with a frequency-locked-loop[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4918-4927. [33] He Wei, Yuan Xiaoming, Hu Jiabing.Inertia provision and estimation of PLL-based DFIG wind turbines[J]. IEEE Transactions on Power Systems, 2017, 32(1): 510-521. [34] 张涛, 陈亮. 电荷泵锁相环环路滤波器参数设计与分析[J]. 现代电子技术, 2008, 31(9): 87-90. Zhang Tao, Chen Liang.Parameter′s design and analysis of the charge pump phase-locked loop′s loop filter[J]. Modern Electronics Technique, 2008, 31(9): 87-90. [35] Dong Shuan, Chen Yu Christine.A method to directly compute synchronverter parameters for desired dynamic response[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 814-825. |
|
|
|