|
|
Characteristics of Multi-Band Oscillation for Direct Drive Wind Farm Interfaced with VSC-HVDC System |
Chen Baoping1, Lin Tao1, Chen Rusi1, Guo Ziyu1, Sheng Yibiao1, Xu Xialing2 |
1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. Central China Division of the State Grid Corporation of China Wuhan 430077 China |
|
|
Abstract Wind or PV power interfaced with HVDC system is an ideal approach to transmit power for renewable energy consumption. It is worthy of further study the multi-band oscillation (MBO) of direct drive wind farm based on direct-drive permanent magnet synchronous generator (D-PMSG) interfaced with voltage source converter-based HVDC (VSC-HVDC) system. Firstly, the dynamic models of D-PMSG and VSC-HVDC are established respectively, and the interface dynamic equation between them is deduced, and then the complete model of system is obtained. Based on the eigenvalue analysis, it can be found that there exist low frequency oscillatory (LFO), sub/sup-sybchronous oscillatory (SubSO/SupSO) and high frequency oscillatory (HFO) modes, and these modes are not only related to the parameters of the converter controllers, but also to the short-circuit ratio (SCR) of VSC-HVDC receiving-side power grid, and the HVDC transmission line parameters. Time domain simulation by PSCAD/EMTDC verifies the correctness of the model and eigenvalue analysis results. Furthermore, the influence of SCR and HVDC transmission line parameter on the damping characteristics of MBO is further studied in detail. It is found that, it is especially necessary to monitor the operating state of receiving-side power grid whose SCR is too low, that may deteriorate the damping ratio. Considering the HVDC transmission line parameter has a great influence on HFO mode, HVDC transmission whose line length is too short shall be given attention.
|
Received: 01 June 2018
Published: 26 September 2018
|
|
|
|
|
[1] 王伟胜, 张冲, 何国庆, 等. 大规模风电场并网系统次同步振荡研究综述[J]. 电网技术, 2017, 41(4): 1050-1060. Wang Weisheng, Zhang Chong, He Guoqing, et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J]. Power System Technology, 2017, 41(4): 1050-1060. [2] 王晖, 李莹, 李文锋, 等. 并网逆变器复合电流环引起次/超同步振荡机理研究[J]. 电网技术, 2017, 41(4): 1061-1068. Wang Hui, Li Ying, Li Wenfeng, et al.Mechanism research of subsynchronous and supersynchronous oscillations caused by compound current loop of grid-connected inverter[J]. Power System Technology, 2017, 41(4): 1061-1068. [3] 戴金水, 吕敬, 朱淼, 等. 大型海上风电场经VSC–HVDC并网的次同步振荡阻尼特性分析[J]. 电气应用, 2016, 35(8): 51-57. Dai Jinshui, Lü Jing, Zhu Miao, et al.Analysis of subsynchronous oscillation damping characteristics of large offshore wind farms interfaced with VSC-HVDC connected to power grid[J]. Electrotechnical Application, 2016, 35(8): 51-57. [4] 徐坤, 赵成勇, 高本峰. VSC-HVDC的次同步阻尼特性研究[J]. 电力系统保护与控制, 2012, 40(2): 1-6. Xue Kun, Zhao Chengyong, Gao Benfeng.Study on sub•synchronous damping characteristic of VSC-HVDC[J]. Power System Protection and Control, 2012, 40(2): 1-6. [5] 杨黎晖, 马西奎. 双馈风电机组对电力系统低频振荡特性的影响[J]. 中国电机工程学报, 2011, 31(10): 19-25. Yang Lihui, Ma Xikui.Impact of doubly fed induction generator wind turbine on power system low-frequency oscillation characteristic[J]. Proceedings of the CSEE, 2011, 31(10): 19-25. [6] 秦超, 曾沅, 苏寅生, 等. 基于安全域的大规模风电并网系统低频振荡稳定分析[J]. 电力自动化设备, 2017, 37(5): 100-106. Qin Chao, Zeng Yuan, Su Yinsheng, et al.Low-frequency oscillatory stability analysis based on security regionfor power system with large-scale wind power[J]. Electric Power Automation Equipment, 2017, 37(5): 100-106. [7] 李景一, 毕天姝, 于钊, 等. 直驱风机变流控制系统对次同步频率分量的响应机理研究[J]. 电网技术, 2017, 41(6): 1734-1740. Li Jingyi, Bi Tianshu, Yu Zhao, et al.Study on response characteristics of grid converter control system of permanent magnet synchronous generators (PMSG) to subsynchronous frequency component[J]. Power System Technology, 2017, 41(6): 1734-1740. [8] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372. Xie Xiaorong, Liu Huakun, He Jing bo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372. [9] 耿华, 许德伟, 吴斌. 永磁直驱变速风电系统的控制及稳定性分析[J]. 中国电机工程学报, 2009, 29(33): 68-75. Geng Hua, Xu Dewei, Wu Bin.Control and stability analysis for the permanent magnetic synchronous generator based direct driven variable speed wind energy conversion system[J]. Proceedings of the CSEE, 2009, 29(33): 68-75. [10] Lyu J, Cai X, Molinas M.Frequency domain stability analysis of MMC-based HVDC for wind farm integration[J].IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(1): 141-151. [11] 杨洁, 刘开培, 余俞, 等. 交流电网互联的双端柔性直流输电系统小信号建模[J]. 中国电机工程学报, 2015, 35(9): 2177-2184. Yang Jie, Liu Kaipei, Yu Yu, et al.Small signal modeling for VSC-HVDC used in AC grid interconnection[J]. Proceedings of the CSEE, 2015, 35(9): 2177-2184. [12] 刘忠义, 刘崇茹, 李庚银, 等. 机械轴系模型对直驱永磁同步风力发电机暂态分析的影响[J]. 电工技术学报, 2016, 31(2): 145-152. Liu Zhongyi, Liu Chongru, Li Gengyin, et al.Influence of shafting models in the transient analysis of wind turbines with permanent magnet synchronous generators[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 145-152. [13] 屠卿瑞, 徐政, 张静. 基于PSCAD/EMTDC的直驱式风力发电接入系统建模与仿真[J]. 太阳能学报, 2010, 31(4): 523-529. Tu Qingrui, Xu Zheng, Zhang Jing.Modeling and simulation on connection of direct-drive wind turbine based on PSCAD/EMTDC[J]. Acta Energiae Solaris Sinica, 2010, 31(4): 523-529. [14] 姚骏, 廖勇, 庄凯. 永磁直驱风电机组的双PWM变换器协调控制策略[J]. 电力系统自动化, 2008, 32(20): 88-92. Yao Jun, Liao Yong, Zhuang Kai.Coordinated control strategy of back-to-back PWM converter for permanent magnet direct-driven wind turbine[J]. Automation of Electric Power Systems, 2008, 32(20): 88-92. [15] 瞿兴鸿. 直驱永磁同步风力发电系统的研究与设计[D]. 重庆: 重庆大学, 2008. [16] 苏勋文. 风电场动态等值建模方法研究[D]. 北京: 华北电力大学, 2010. [17] 汤广福. 基于电压源换流高压直流输电技术[M]. 北京: 中国电力出版社, 2010. [18] 杨悦, 李国庆. 基于VSC-HVDC的海上风电小干扰稳定控制[J]. 电工技术学报, 2016, 31(13): 101-110. Yang Yue, Li Guoqing.The small signal stability control of offshore wind farm based on VSC-HVDC[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 101-110. |
|
|
|