|
|
Wind Speed and Wind Power Forecasting Method Based on Wavelet Packet Decomposition and Improved Elman Neural Network |
Ye Ruili1, Guo Zhizhong1, Liu Ruiye1, Liu Jiannan2 |
1.School of Electrical Engineering & Automation Harbin Institute of Technology Harbin 150001 China 2.State Grid AC Engineering Construction Company Beijing 100052 China |
|
|
Abstract Accurate prediction of wind speed and wind power is of great significance to the operation and maintenance of wind farms,the optimal scheduling of turbines and the safe and stable operation of power grids.A new method for wind speed and wind power forecasting based on the wavelet packet decomposition theory and an improved Elman neural network was put forward,and the concrete application steps of the method was given.Wavelet packet decomposition theory is firstly adopted to decompose wind speed data into several wavelet spaces,and according to the correlation,the optimal decomposition tree is persisted and random data are rejected.Then a new PSO training algorithm with disturbance is proposed to improve the training speed of neural networks and deal with the drawback of easily falling into local optimal solution of PSO.Finally,Elman neural networks with different structures are established and used to find the laws of wind speed in different frequency bands,wind speed and wind power prediction results are hence received.The forecasting results based on the wind speed data of a wind farm in south China show that the proposed method has higher forecasting accuracy and is able to reflect the laws of wind speed and wind power correctly.
|
Received: 22 May 2016
Published: 10 November 2017
|
|
|
|
|
[1] GWEC.Global wind power statistics 2015.[EB/OL].[2016-02-10].http://www.gwec.net. [2] 薛禹胜,郁琛,赵俊华,等.关于短期及超短期风电功率预测的评述[J].电力系统自动化,2015,39(6):141-151. Xue Yusheng,Yu Chen,Zhao Junhua,et al.A review on short-term and ultra-short-term wind power prediction[J].Automation of Electric Power Systems,2015,39(6):141-151. [3] 钱政,裴岩,曹利宵,等.风电功率预测方法综述[J].高电压技术,2016,42(4):1047-1060. Qian Zheng,Pei Yan,Cao Lixiao,et al.Review of wind power forecasting method[J].High Voltage Engineering,2016,42(4):1047-1060. [4] 甘迪,柯德平,孙元章,等.基于集合经验模式分解和遗传-高斯过程回归的短期风速概率预测[J].电工技术学报,2015,30(11):138-147. Gan Di,Ke Deping,Sun Yuanzhang,et al.Short-term wind speed probabilistic forecasting based on EEMD and coupling GA-GPR[J].Transactions of China Electrotechnical Society,2015,30(11):138-147. [5] 叶林,赵永宁.基于空间相关性的风电功率预测研究综述[J].电力系统自动化,2014,38(14):126-135. Ye Lin,Zhao Yongning.A review on wind power prediction based on spatial correlation approach[J].Automation of Electric Power Systems,2014,38(14):126-135. [6] Jung J,Broadwater R P.Current status and future advances for wind speed and power forecasting[J].Renewable and Sustainable Energy Reviews,2014,31:762-777. [7] 王晓曦.基于非参数方法的短期风电功率预测研究[D].大连:大连理工大学,2014. [8] 罗文,王莉娜.风场短期风速预测研究[J].电工技术学报,2011,26(7):68-74. Luo Wen,Wang Lina.Short-term wind speed forecasting for wind farm[J].Transactions of China Electrotechnical Society,2011,26(7):68-74. [9] 潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86. Pan Difu,Liu Hui,Li Yanfei.A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J].Power System Technology,2008,32(7):82-86. [10]陈昊,万秋兰,王玉荣.基于厚尾均值广义自回归条件异方差族模型的短期风电功率预测[J].电工技术学报,2016,31(5):91-98. Chen Hao,Wan Qiulan,Wang Yurong.Short-term wind power forecast based on fat-tailed generalized autoregressive conditional heteroscedasticity-in-mean type models[J].Transactions of China Electrotechnical Society,2016,31(5):91-98. [11]修春波,任晓,李艳晴,等.基于卡尔曼滤波的风速序列短期预测方法[J].电工技术学报,2014,29(2):253-259. Xiu Chunbo,Ren Xiao,Li Yanqing,et al.Short-term prediction method of wind speed series based on Kalman filtering fusion[J].Transactions of China Electrotechnical Society,2014,29(2):253-259. [12]Mohandes M A,Halawani T O,Rehman S,et al.Support vector machines for wind speed prediction[J].Renewable Energy,2004,29(6):939-947. [13]Miller K R,Vapnik V.Using support vector machine for time series prediction[M].Cambridge:MIT Press,1999:243-253. [14]潘学萍,史宇伟,张弛.双加权最小二乘支持向量机的短期风速预测[J].电力系统及其自动化学报,2014,26(1):13-17. Pan Xueping,Shi Yuwei,Zhang Chi.Short-term wind speed forecast based on double weighted least squares support vector machine algorithm[J].Proceedings of the CSU-EPSA,2014,26(1):13-17. [15]王东风,王富强,牛成林.小波分解层数及其组合分量对短期风速多步预测的影响分析[J].电力系统保护与控制,2014,42(8):82-89. Wang Dongfeng,Wang Fuqiang,Niu Chenglin.Analysis of wavelet decomposition for multi-step prediction of short-term wind speed[J].Power System Protection and Control,2014,42(8):82-89. [16]田中大,李树江,王艳红,等.基于小波变换的风电场短期风速组合预测[J].电工技术学报,2015,30(9):112-120. Tian Zhongda,Li Shujiang,Wang Yanhong,et al.Short-term wind speed combined prediction for wind farms based on wavelet transform[J].Transactions of China Electrotechnical Society,2015,30(9):112-120. [17]方必武,刘涤尘,王波,等.基于小波变换和改进萤火虫算法优化LSSVM的短期风速预测[J].电力系统保护与控制,2016,44(8):37-43. Fang Biwu,Liu Dichen,Wang Bo,et al.Short-term wind speed forecasting based on WD-CFA-LSSVM model[J].Power System Protection and Control,2016,44(8):37-43. [18]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generated power forecasting in wind farm[J].Proceedings of the CSEE,2005,25(11):1-5. [19]Mohandes M A,Rehman S,Halawani T O.A neural networks approach for wind speed prediction[J].Renewable Energy,1998,13:345-354. [20]杨正瓴,冯勇,熊定方,等.基于季风特性改进风电功率预测的研究展望[J].智能电网,2015,3(1):1-7. Yang Zhengling,Feng Yong,Xiong Dingfang,et al.Research prospects of improvement in wind power forecasting based on characteristics of monsoons[J].Smart Grid,2015,3(1):1-7. [21]蔡菲,严正,赵静波,等.基于 Copula 理论的风电场间风速及输出功率相依结构建模[J].电力系统自动化,2013,37(17):9-16. Cai Fei,Yan Zheng,Zhao Jingbo,et al.Dependence structure models for wind speed and wind power among different wind farms based on Copula theory[J].Automation of Electric Power Systems,2013,37(17):9-16. [22]Lange M,Focker U.Physical approach to short-term wind power prediction[M].Germany:Spring,2006:7-8. [23]张宜阳,卢继平,孟洋洋,等.基于经验模式分解和混沌相空间重构的风电功率短期预测[J].电力系统自动化,2012,36(5):24-28. Zhang Yiyang,Lu Jiping,Meng Yangyang,et al.Wind power short-term forecasting based on empirical mode decomposition and chaotic phase space reconstruction[J].Automation of Electric Power Systems,2012,36(5):24-28. [24]袁铁江,晁勤,李义岩,等.大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J].中国电机工程学报,2010,30(13):23-27. Yuan Tiejiang,Chao Qin,Li Yiyan,et al.Short-term wind power output forecasting model for economic dispatch of power system incorporating large-scale wind farm[J].Proceedings of the CSEE,2010,30(13):23-27. [25]王松岩,于继来.风速与风电功率的联合条件概率预测方法[J].中国电机工程学报,2011,31(7):7-15. Wang Songyan,Yu Jilai.Joint conditions probability forecast method for wind speed and wind power[J].Proceedings of the CSEE,2011,31(7):7-15. [26]韩晓娟,陈跃燕,张浩,等.基于小波包分解的混合储能技术在平抑风电场功率波动中的应用[J].中国电机工程学报,2013,33(19):8-13. Han Xiaojuan,Chen Yueyan,Zhang Hao,et al.Application of hybrid energy storage technology based on wavelet packet decomposition in smoothing the fluctuation of wind power[J].Proceeding of the CSEE,2013,33(19):8-13. [27]尹东阳,盛义发,蒋明洁,等.基于粗糙集理论-主成分分析的Elman神经网络短期风速预测[J].电力系统保护与控制,2014,42(11):46-52. Yin Dongyang,Sheng Yifa,Jiang Mingjie,et al.Short-term wind speed forecasting using Elman neural network based on rough set theory and principal components analysis[J].Power System Protection and Control,2014,42(11):46-52. [28]刘衍民.粒子群算法的研究及应用[D].济南:山东师范大学,2011. [29]风电功率预测功能规范[S].北京:国家电网公司,2011.
|
|
|
|