|
|
Backstepping Control Based SVM-DTC of PMSM for Mechanical Elastic Energy Storage System |
Mi Zengqiang1, Zheng Xiaoming1, Yu Yang1, Chang Da1, Sun chenjun2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Source North China Electric Power University(Baoding) Baoding 071003 China; 2. State Grid Hebei Electric Power Company Shijiazhuang 050022 China |
|
|
Abstract Torque and moment of inertia of the permanent magnet synchronous motor (PMSM) load is simultaneous continuously changing in the process of energy storage in mechanical elastic energy storage (MEES) system. A kind of control system which can track the change quickly and has strong anti-jamming ability is needed under this circumstance. Combining backstepping adaptive control algorithm with direct torque control (DTC) system with the feature of fast-speed response and easy to track control target, which has good steady and transient performance. A single recursive least square (RLS) estimation algorithm with forgetting factor is designed to simultaneously estimate load torque and inertia in this passage firstly, furthermore, an backstepping controller of the rotation angle, speed, torque and flux linkage was designed and finally get the stator voltage in the two-phase stationary coordinate system. At the same time, an adaptive algorithm was added to eliminate the identification error, then the space vector modulation method was applied to generate the switching signals to control the operation of the inverter. Experiment results indicate that the output torque of PMSM can quickly track the load torque, the torque ripples are low, and the energy storage process is stable.
|
Received: 12 January 2017
Published: 10 November 2017
|
|
|
|
|
[1] 周林, 黄勇, 郭珂, 等. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152. Zhou Lin, Huang Yong, Guo Ke, et al. A survey of energy storage technology for micro grid[J]. Power System Protection and Control, 2011, 39(7): 147-152. [2] 袁铁江, 陈洁, 刘沛汉, 等. 储能系统改善大规模风电场出力波动的策略[J]. 电力系统保护与控制, 2014, 42(4): 47-53. Yuan Tiejiang, Chen Jie, Liu Peihan, et al. Strategy of improving large-sacle wind farm output fluctuation based on energy storage system [J]. Power System Protection and Control, 2014, 42(4): 47-53. [3] 于芃, 赵瑜, 周玮, 等. 基于混合储能系统的平抑风电波动功率方法的研究[J]. 电力系统保护与控制, 2011, 39(24): 35-40. Yu Peng, Zhao Yu, Zhou Wei, et al. Research on the method based on hybrid energy storage system for balancing fluctuant wind power[J]. Power System Protection and Control, 2011, 39(24): 35-40. [4] 米增强, 余洋, 王璋奇, 等. 永磁电机式机械弹性储能机组及其关键技术初探[J]. 电力系统自动化, 2013, 37(1): 26-30. Mi Zengqiang, Yu Yang, Wang Zhangqi, et al. Preliminary exploration on permanent magnet motor based mechanical elastic energy storage unit and key technical issues[J]. Automation of Electric Power Systems, 2013, 37(1): 26-30. [5] 米增强, 余洋, 王璋奇, 等.永磁电机式弹性储能发电系统: 中国, CN102064561A[P]. 2011-01-14. [6] Yu Yang, Mi Zengqiang, Guo Xudong. Modeling and calculation of variable moment of inertia for spiral power spring[J]. Advances in Mechanical Engineering, 2015, 7(9): 1-15. [7] Yu Yang, Mi Zengqiang, Guo Xudong, et al. Low speed control and implementation of permanent magnet synchronous motor for mechanical elastic energy storage device with simultaneous variations of inertia and torque[J]. IET Electric Power Applications, 2016, 10(3): 172-180. [8] 陈炜, 艾士超, 谷鑫, 等. 基于最小电压矢量偏差的永磁同步电机直接转矩控制[J]. 电工技术学报, 2015, 30(14): 116-121. Chen Wei, Ai Shichao, Gu Xin, et al. Direct torque control for permanent magnet synchronous motor based on minimum vector deviation[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 116-121. [9] 吕帅帅, 林辉, 马冬麒. 基于最优占空比调制的永磁同步电机直接转矩控制[J]. 电工技术学报, 2015, 30(增刊1): 35-42. Lü Shuaishuai, Lin Hui, Ma Donglin, et al. Direct torque control for permanent magnet synchronous motor with optimal duty cycle control[J]. Transactions of China Electrotechnical Society, 2015, 32(S1): 35-42. [10] 刘钰山, 葛宝明, 毕大强, 等. 基于改进的直接转矩控制的风力机模拟系统[J]. 电力系统保护与控制, 2010, 38(18): 140-144. Liu Yushan, Ge Baoming, Bi Daqiang, et al. Improved direct torque control based wind turbine simulation system[J]. Power System Protection and Control, 2010, 38(18): 140-144. [11] Casadei D, Serra G, Tani A. Implementation of a direct control algorithm for induction motors based on discrete space vector modulation[J]. IEEE Transactions on Power Electronics, 2000, 15(4): 769-777. [12] Khoucha F, Marouani K, Aliouane K, et al. Experimental performance analysis of adaptive flux and speed observers for direct torque control of sensorless induction motor drives[C]//2004 IEEE 35 th Annual Power Electronics Specialists Conference, Aachen, Germany, 2004. [13] Lai Y S, Chen J H. A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction[J]. IEEE Transactions on Energy Conversion, 2001, 16(3): 220-227. [14] 徐艳平, 雷亚洲, 马灵芝, 等. 基于反推控制的永磁同步电机新型直接转矩控制方法[J]. 电工技术学报, 2015, 30(10): 83-89. Xu Yanping, Lei Yazhou, Ma Lingzhi, et al. A novel direct torque control of permanent magnet synchronous motors based backstepping control[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 83-89. [15] 刘栋良, 王家军, 崔丽丽. 永磁同步电机参数自适应调速控制[J]. 电工技术学报, 2011, 26(8): 159-165. Liu Dongliang, Wang Jiajun, Cui Lili. Speed tracking control of permanent magnet synchronous motors with adaptive parameters[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 159-165. [16] 刘栋良, 郑谢辉, 崔丽丽. 无速度传感器永磁同步电机反推控制[J]. 电工技术学报, 2011, 26(9): 67-72. Liu Dongliang, Zheng Xiehui, Cui Lili. Backstepping control of speed sensorless permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2011, 26(9): 67-72. [17] 庞中华. 系统辨识与自适应控制MATLAB仿真[M]. 北京: 北京航空航天大学出版社, 2009. |
|
|
|