|
|
Probabilistic Load Flow Calculation Based on Slice Sampling for Wind Farms Integration System |
Zhang Xiaoying1, Wang Kun1 ,Zhang Labao2 |
1.College of Electrical and Information Engineering Lanzhou University of TechnologyLanzhou 730050 China; 2.School of Electronic Science and Engineering Nanjing University Nanjing 210093 China |
|
|
Abstract Gibbs sampling algorithm that is widely used in Markov Chain Monte Carlo (MCMC) simulation method suffers from complicated sampling iterations when accurate results from probabilistic load flow is required.According to the defect,an improved MCMC method based on Slice sampling is proposed in this paper and is integrated into probabilistic load flow algorithm for wind farms integration system.The probabilistic model of wind farm outputs is firstly constructed by weighted Gaussian mixture distribution (WGMD).Then,the sample space of wind farm outputs is obtained by Slice sampling from the WGMD of wind farm outputs.Finally,the samples from the sample space of wind farm outputs are calculated by load flow and the results of these two sampling methods are compared in IEEE 39-bus system.It is shown that the proposed method can distinctly improve the calculation accuracy of MCMC method.Additionally,the Markov Chain generated by Slice sampling can reach a stationary distribution more quickly and stably than Gibbs sampling with the same iterations.
|
Received: 10 July 2015
Published: 26 December 2016
|
|
|
|
|
[1] 陈谦,陈霄逸,金宇清,等.基于混合储能的大型风电场优化控制[J].电力自动化设备,2015,35(4):70-76. Chen Qian,Chen Xiaoyi,Jin Yuqing,et al.Optimal control of large-scale wind farm based on hybrid energy storage[J].Electric Power Automation Equipment,2015,35(4):70-76. [2] 金海峰,吴涛.风电接入系统后的电压稳定问题[J].电力自动化设备,2010,30(9):82-84. Jin Haifeng,Wu Tao.Voltage stability after grid-connection of wind farm[J].Electric Power Automation Equipment,2010,30(9):82-84. [3] Borkowska B.Probabilistic load flow[J].IEEE Transactions on Power Apparatus and Systems,1974,93(3):752-759. [4] Oke O A,Thomas D W P.Enhanced cumulant method for probabilistic power flow in systems with wind generation[C]//11th International Conference on Environment and Electrical Engineering (EEEIC),Venice,Italy,2012:849-853. [5] 董雷,杨以涵,张传成,等.综合考虑网络结构不确定性的概率潮流计算方法[J].电工技术学报,2012,27(1):210-216. Dong Lei,Yang Yihan,Zhang Chuancheng,et al.Probabilistic load flow considering network configuration uncertainties[J].Transactions of China Electrotechnical Society,2012,27(1):210-216. [6] Saunders C S.Point estimate method addressing correlated wind power for probabilistic optimal power flow[J].IEEE Transactions on Power Systems,2014,29(3):1045-1054. [7] 吴巍,汪可友,韩蓓,等.基于Pair Copula的随机潮流三点估计法[J].电工技术学报,2015,30(9):121-128. Wu Wei,Wang Keyou,Han Bei,et al.Pair Copula based three-point estimate method for probabilistic load flow calculation[J].Transactions of China Electrotechnical Society,2015,30(9):121-128. [8] 蔡德福,石东源,陈金富.基于Copula理论的计及输入随机变量相关性的概率潮流计算[J].电力系统保护与控制,2013,41(20):13-19. Cai Defu,Shi Dongyuan,Chen Jinfu.Probabilistic load flow considering correlation between input random variables based on Copula theory[J].Power System Protection and Control,2013,41(20):13-19. [9] Zhen S,Panida J,Armando M,et al.Accelerated state evaluation and Latin hypercube sequential sampling for composite system reliability assessment[J].IEEE Transactions on Power Systems,2014,29(4):1692-1700. [10]茆美琴,周松林,苏建徽.基于风光联合概率分布的微电网概率潮流预测[J].电工技术学报,2014,29(2):55-63. Mao Meiqin,Zhou Songlin,Su Jianhui.Probabilistic power flow forecasting of microgrid based on joint probability distribution about wind and irradiance[J].Transactions of China Electrotechnical Society,2014,29(2):55-63. [11]石文辉,别朝红,王锡凡.大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J].中国电机工程学报,2008,28(4):9-15. Shi Wenhui,Bie Chaohong,Wang Xifan.Applications of Markov Chain Monte Carlo in large-scale system reliability evaluation[J].Proceedings of the CSEE,2008,28(4):9-15. [12]James C S.Estimation via Markov Chain Monte Carlo[J].IEEE Control System Magazine,2003,23(2):35-45. [13]Muller O,Yang M Y,Rosenhahn B.Slice sampling particle belief propagation[C]//International Conference on Computer Vision,Sydney,2013:1129-1136. [14]Neal R M.Slice sampling[J].Annals of Statistics,2003,31(3):705-767. [15]戎晓雪,别朝红,石文辉,等.考虑风电场相关性的含风电电力系统随机潮流分析[J].电网技术,2014,38(8):2161-2167. Rong Xiaoxue,Bie Chaohong,Shi Wenhui,et al.Analysis on probabilistic load flow in power gird integrated with wind farms considering correlativity among different wind farms[J].Power System Technology,2014,38(8):2161-2167. [16]于鹏,黎静华,文劲宇,等.含风电功率时域特性的风电功率序列建模方法[J].中国电机工程学报,2014,34(22):3715-3723. Yu Peng,Li Jinghua,Wen Jinyu,et al.A wind power time series modeling method based on its time domain characteristics[J].Proceedings of the CSEE,2014,34(22):3715-3723. [17]蔺红,孙立成,常喜强.新疆风电出力波动特性的概率建模[J].电网技术,2014,38(6):1616-1620. Lin Hong,Sun Licheng,Chang Xiqiang.A probabilistic model to simulate wind power output fluctuation of a certain wind farm cluster in Xinjiang region[J].Power System Technology,2014,38(6):1616-1620. [18]Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society,1977,39(1):1-38. [19]王平波,蔡志明,刘旺锁.混合高斯概率密度模型参数的期望最大化估计[J].声学技术,2007,26(3):498-502. Wang Pingbo,Cai Zhiming,Liu Wangsuo.EM estimation of PDF parameters for Gaussian mixture processes[J].Technical Acoustics,2007,26(3):498-502. [20]Besag J,Green P J.Spatial statistics and Bayesian computation[J].Journal of the Royal Statistical Society,1993,55(1):25-37. [21]50Hertz Transmission GmbH.Grid data[DB/OL].[2013-07-14].http://www.50hertz.com/en/Netzkennz ahlen.htm. [22]Gelman A,Rubin D.Inference from iterative simulation using multiple sequences[J].Statistical Science,1992,7(4):457-511. [23]Bocquel M,Papi F,Podt M,et al.Multitarget tracking with multiscan knowledge exploitation using sequential MCMC sampling[J].IEEE Journal of Selected Topics in Signal Processing,2013,7(3):532-542. [24]Chen Y,Wen Jinyu,Cheng Shijie.Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling[J].IEEE Transactions on Sustainable Energy,2013,4(2):294-301.
|
|
|
|