|
|
Research of Preparation and Non-Linear Conductivity Modification of Doped ZnO/Epoxide Resin Material |
Liu Chenyang1, Zheng Xiaoquan1, Bie Chengliang2 |
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. Beijing Electric Power Company Beijing 100022 China |
|
|
Abstract When the spacecraft is running on the geostationary orbit (GEO), due to the influence of high energy electron radiation, the surface and depth of dielectric material would be charged. Electrons will accumulate in high resistivity dielectric materials and are hard to release, which affect the normal operation of the spacecraft seriously. Based on the dielectric material theory and taken a method for modification by adding ZnO micron filler into epoxide resin (EP) body, this paper developed a new kind of modified EP composites with non-linear conductivity. The electrical test and breakdown test under strong electric field were then carried out. Experimental results show that the modified ZnO/EP material has excellent nonlinear-conductivity characteristics. The current density of 1% ZnO/EP sample is the largest, and 5% ZnO/EP sample is minimum respectively under the same electric field. When the electric field is more than 20kV/mm, the current density increases exponentially with increasing the electric field. The DC breakdown voltage of modified material also remain unchanged, and the sample of 5% filler content has the highest DC breakdown strength but smaller dispersion.
|
Received: 25 August 2014
Published: 12 July 2016
|
|
|
|
|
[1] 黄建国, 陈东. 卫星中介质深层充电特征研究[J]. 物理学报, 2004, 53(3): 961-966. Huang Jianguo, Chen Dong. A study of charac- teristic s for deep dielectric charging on satellites[J]. Acta Physica Sinica, 2004, 53(3): 961-966. [2] 黄建国, 陈东. 不同接地方式的卫星介质深层充电研究[J]. 物理学报, 2004, 53(5): 1611-1616. Huang Jianguo, Chen Dong. A study of deep dielectric charging on satellites for different grounding pattern[J]. Acta Physica Sinica, 2004, 53(5): 1611-1616. [3] 秦晓刚, 贺德衍, 王骥. 基于Geant4的介质深层充电电场计算[J]. 物理学报, 2009, 58(1): 684-689. Qin Xiaogang, He Deyan, Wang Ji. Geant4-based calculation of electric field in deep dielectric charging[J]. Acta Physica Sinica 2009, 58(1): 684- 689. [4] 黄建国, 陈东. 卫星介质深层充电的计算机模拟研究[J]. 地球物理学报, 2004, 47(3): 392-397. Huang Jianguo, Chen Dong. A study of deep dielectric charging on satellites by computer simu- lation[J]. Chinese Journal of Geophysics, 2004, 47(3): 392-397. [5] 乌江, 康亚丽, 张振军,等. 两种典型星用聚合物介质抗内带电改性防护技术研究[J]. 真空与低温, 2012, 18(1): 26-32. Wu Jiang, Kang Yali, Zhang Zhenjun, et al. Study on the deep dielectric charging protection technology of two typical polymers on spacecraft[J]. Vacuum & Cryogenics, 2012, 18(1): 26-32. [6] Levy L, Paulmier T, Dirassen B, et al. Aging and prompt effects on space material properties[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2228- 2237. [7] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al. Effect of atmospheric- pressure microsecond pulsed discharges on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [8] 张明艳, 孙婷婷, 张晓虹, 等. 蒙脱土改性环氧树脂复合材料的制备及性能研究[J]. 电工技术学报, 2006, 21(4): 29-34. Zhang Mingyan, Sun Tingting, Zhang Xiaohong, et al. Study of preparation and properties of organo- montmorillonite modified epoxy nanocomposite[J]. Transactions of China Electrotechnical Society, 2006, 21(4): 29-34. [9] 曹万荣, 符开斌, 狄宁宇, 等. 无机纳米粒子增韧改性环氧树脂的研究进展[J]. 绝缘材料, 2009, 42(6): 31-35, 40. Chao Wanrong, Fu Kaibin, Di Ningyu, et al. Research progress in the toughness modification of epoxy resin by inorganic nano-particles[J]. Insu- lation Materials, 2009, 42(6): 31-35, 40. [10] 高宇, 李莹, 崔劲达, 等. 伽玛线辐射对环氧树脂表面陷阱分布的影响[J]. 电工技术学报, 2012, 27(12): 264-269. Gao Yu, Li Ying, Cui Jinda, et al. Effect of Gamma-ray irradiation on surface trap distribution of epoxy resin[J]. Transactions of China Electro- technical Society, 2012, 27(12): 264-269. [11] 申巍, 曹雯, 吴锴. 环氧/纸复合材料击穿特性及空间电荷的研究[J]. 电工技术学报, 2013, 28(1): 1-6. Shen Wei, Cao Wen, Wu Kai. Study of characteristics of breakdown strength and space charge in epoxy/ paper composite[J]. Transactions of China Electro- technical Society, 2013, 28(1): 1-6. [12] 韩宝忠, 周道成, 韩宝国. 镍粉/环氧树脂复合材料的压敏性[J]. 电工技术学报, 2011, 26(4): 1-6. Han Baozhong, Zhou Daocheng, Han Baoguo. Piezoresistivity of nickel powder filled epoxy resin composites[J]. Transactions of China Electro- technical Society, 2011, 26(4): 1-6. [13] 陈尔凡, 周本廉. T-ZnO晶须增强环氧树脂复合材料的抗静电性[J]. 塑料工业, 2003, 31(10): 40-42. Chen Erfan, Zhou Benlian. Antistativity of T-ZnO whisker reinforced epoxy resin composites[J]. China Plastics Industry, 2003, 31(10): 40-42. [14] 陈尔凡, 田雅娟, 周本廉. 偶联剂对T-ZnO晶须/环氧树脂复合材料的影响[J]. 塑料工业, 2003, 31(4): 19-21. Chen Erfan, Tian Yajuan, Zhou Benlian. Effect of coupling agent on T-ZnO whisker reinforced epoxy resin composite[J]. China Plastics Industry, 2003, 31(4): 19-21. [15] 董福平. 纳米ZnO改性LED封装用环氧树脂的抗紫外老化研究[D]. 重庆: 重庆大学, 2007. [16] 万翠凤, 金胜明. T-ZnO晶须表面改性及在环氧树脂抗静电漆中的应用[J]. 材料导报, 2007, 21(8): 375-377. Wan Cuifeng, Jin Shengming. Surface modification of T-ZnO whisker and its application in antistatic epoxy resin[J]. Material Review, 2007, 21(8): 375- 377. [17] 刘亚强, 安振连, 仓俊, 等. 氟化时间对环氧树脂绝缘表面电荷积累的影响[J]. 物理学报, 2012, 61(15): 506-513. Liu Yaqiang, An Zhenlian, Cang Jun, et al. Influence of fluorination time on surface charge accumulation on epoxy resin insulation[J]. Acta Physica Sinica, 2012, 61(15): 506-513. [18] Hong R Y, Zhang S Z, Han Y P, et al. Preparation, characterization and application of bilayer surfactant- stabilized ferrofluids[J]. Power Technology, 2006, 170(1): 1-11. [19] 张明艳, 隋珊, 陈金玉, 等. 功能化碳纳米管/环氧树脂复合材料性能研究[J]. 电工技术学报, 2014, 29(4): 97-102. Zhang Mingyan, Sui Shan, Chen Jinyu, et al. Study of properties of functional multi-walled carbon nanotubes/ epoxy nanocomposites[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 97-102. [20] Montanari G C, Fabiani D, Palmieri F, et al. Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 754-762. [21] Zhen W, Lu C. Surface modification of thermoplastic poly (vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment[J]. Applied Surface Science, 2012, 258(18): 6969-6976. [22] 熊小伏, 陈康, 郑伟, 等. 基于最小二乘法的光伏逆变器模型辨识[J]. 电力系统保护与控制, 2012, 40(22): 52-57. Xiong Xiaofu, Chen Kang, Zheng Wei, et al. Photovoltaic inverter model identification based on least squares method[J]. Power System Protection and Control, 2012, 40(22): 52-57. [23] 王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12): 230-235. Wang Qi, Li Zhe, Yin Yi. The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electro- technical Society, 2014, 29(12): 230-235. [24] 王乐, 徐曼, 孙颖, 等. 纳米银/环氧树脂复合物的电阻和击穿特性研究[J]. 绝缘材料, 2006, 39(4): 37-40. Wang Le, Xu Man, Sun Ying, et al. Study on the resistance and electric breakdown properties of nano silver/epoxy resin composite[J]. Insulation materials, 2006, 39(4): 37-40. [25] Wang Y, Shi H, Sun J, et al. Period-two discharge characteristics in argon atmospheric dielectric-barrier discharges[J]. Physics of Plasmas, 2009, 16(6): 063507. [26] Sworakowski J, Janus K, Nešpůrek S, et al. Local states in organic materials: charge transport and localization[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5): 1001-1015. [27] Sarathi R, Aravinth S, Sethupathi K. Analysis of surface discharge activity in epoxy nanocomposites in liquid nitrogen under AC voltage[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2014, 21(2): 452-459. |
|
|
|