|
|
A DFIG Wind Turbine Low-voltage Ride-through Control Strategy Restraining Over-speed-tripping-off from Grid |
Yan Gangui, Hou Yanpeng, Wang Jian, Wang Yubo |
School of Electrical Engineering Northeast Dianli University Jilin 132012 China |
|
|
Abstract To avoid the trip-off from grid caused by over-current/over-voltage of rotor-side converter (R-VSC) during voltage dips,an active crowbar protection is often set to by-pass the R-VSC for doubly-fed induction generator based wind turbine (DFIG-WT) to protect the whole system and implement low voltage ride through (LVRT).If the crowbar circuit put into operation lasts for a relatively long time (generally above 200 ms),DFIG over-speed-tripping-off from grid may happen.Based on the mathematical model of DFIG,the transient over-speed process of DFIG caused by the unbalance of wind generators’ rotor torques is analyzed.Then a novel LVRT scheme is presented consisting of an initiative cut-off criterion of Crowbar circuit and R-VSC restarting control strategy.At last,the new DFIG-LVRT scheme of restraining over-speed-tripping-off from grid is formed.The simulation system of DFIG-LVRT is established under PSCAD/EMTDC,and simulations are conducted to demonstrate the validity of the improved method.
|
Received: 30 May 2015
Published: 18 December 2015
|
|
|
|
|
[1] 贺益康,胡家兵.双馈异步风力发电机并网运行中的几个热点问题[J].中国电机工程学报,2012,32(27):1-15. He Yikang,Hu Jiabing.Several hot-spot issues associated with the grid-connected operations of wind-turbine driven doubly fed induction generators[J].Proceedings of the CSEE,2012,32(27):1-15. [2] 穆钢,王健,严干贵,等.双馈型风电机群近满载工况下连锁脱网事件分析[J].电力系统自动化,2011,35(22):35-40. Mu Gang,Wang Jian,Yan Gangui,et al.Cascading trip-off of doubly-fed induction generators from grid at near full-load condition in a wind farm[J].Automation of Electric Power Systems,2011,35(22):35-40. [3] 李丹,贾琳,许晓菲,等.风电机组脱网原因及对策分析[J].电力系统自动化,2011,35(22):41-44. Li Dan,Jia Lin,Xu Xiaofei,et al.Cause and countermeasure analysis on wind turbines’ trip-off from grid[J].Automation of Electric Power Systems,2011,35(22):41-44. [4] 何世恩,董新洲.大规模风电机组脱网原因分析及对策[J].电力系统保护与控制,2012,40(1):131-137. He Shien,Dong Xinzhou.Cause analysis on large-scale wind turbine tripping and its countermeasures[J].Power System Protection and Control,2012,40(1):131-137. [5] 中国国家标准化管理委员会.QB/T 19963-2011 风电场接入电力系统技术规定[S].北京:中华人民共和国国家质量监督检验检疫总局,2012. [6] Rizo M,Rodriguez A,Bueno E.Low voltage ride-through of wind turbine based on interior permanent magnet synchronous generators sensorless vector controlled[J].IEEE Transactions on Power Delivery,2010,10(3):36-374. [7] 朱晓东,石磊,陈宁,等.考虑Crowbar阻值和退出时间的双馈风电机组低电压穿越[J].电力系统自动化,2010,34(18):84-89. Zhu Xiaodong,Shi Lei,Chen Ning,et al.An analysis on low voltage ride through of wind turbine driven doubly fed induction generator with different resistances and quitting time of crowbar[J].Automation of Electric Power Systems,2010,34(18):84-89. [8] 朗永强,张学广,徐殿国,等.双馈感应电机风电场无功功率分析及控制策略[J].中国电机工程学报,2007,27(9):77-82. Lang Yongqiang,Zhang Xueguang,Xu Dianguo,et al.Reactive power analysis and control of doubly fed induction generator wind farm[J].Proceedings of the CSEE,2007,27(9):77-82. [9] 郑重,杨耕,耿华.配置STATCOM的DFIG风电场在不对称电网故障下的控制策略[J].中国电机工程学报,2013,33(19):27-38. Zheng Zhong,Yang Geng,Geng Hua.A control strategy for doubly-fed induction generator based wind farms equipped with STATCOM under asymmetrical grid fault situations[J].Proceedings of the CSEE,2013,33(19):27-38. [10]Yunus A M S,Masoum M A S,Abu-Siada A.Effect of STATCOM on the low-voltage ride-through capability of type-D wind turbine generator[J].IEEE Transactions on Power Delivery,2011,26(11):978-982. [11]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009,24(9):140-146. He Yikang,Zhou Peng.Overview of the low voltage ride-through technology for variable speed constant frequency doubly fed wind power generation systems[J].Transactions of China Electrotechnical Society,2009,24(9):140-146. [12]蔚芳,刘其辉,谢孟丽,等.适应多类型故障的双馈风电机组低电压穿越综合控制策略[J].电力系统自动化,2013,37(5):23-28,133. Yu Fang,Liu Qihui,Xie Mengli,et al.A comprehensive low voltage ride through control strategy of wind turbine driven doubly-fed induction generator adapted to multi-type faults[J].Automation of Electric Power Systems,2013,37(5):23-28,133. [13]蔚兰,陈宇晨,陈国呈,等.双馈感应风力发电机低电压穿越控制策略的理论分析与实验研究[J].电工技术学报,2011,26(7):30-36. Wei Lan,Chen Yuchen,Chen Guocheng,et al.A low voltage ride-through control strategy of doubly fed induction generator[J].Transactions of China Electrotechnical Society,2011,26(7):30-36. [14]撖奥洋,张哲,尹项根,等.双馈风力发电系统故障特性及保护方案构建[J].电工技术学报,2012,27(4):233-239. Han Aoyang,Zhang Zhe,Yin Xianggen,et al.Research on fault characteristic and grid connecting-point protection scheme for wind power generation with doubly-fed induction generator[J].Transactions of China Electrotechnical Society,2012,27(4):233-239. [15]穆钢,王健,郑太一,等.双馈风电机组超速脱网机理分析及实例[J].电力系统自动化,2014,38(22):113-117. Mu Gang,Wang Jian,Zheng Taiyi,et al.Mechanism analysis and a real case of doubly fed induction generator tripping-off from grid caused by overspeed[J].Automation of Electric Power Systems,2014,38(22):113-117. [16]孟岩峰,胡书举,王玲玲,等.电网故障条件下双馈机组运行特性分析及其协调控制[J].电力系统保护与控制,2013,41(8):106-113. Meng Yanfeng,Hu Shuju,Wang Lingling,et al.Characteristics analysis and coordinated control of the doubly-fed wind power system under grid transient fault[J].Power System Protection and Control,2013,41(8):106-113. [17]张艳霞,童锐,赵杰,等.双馈风电机组暂态特性分析及低电压穿越方案[J].电力系统自动化,2013,37(6):7-11. Zhang Yanxia,Tong Rui,Zhao Jie,et al.Transient characteristics analysis and low voltage ride-through scheme of doubly-fed wind turbine generators[J].Automation of Electric Power Systems,2013,37(6):7-11. [18]张建华,王健,陈星莺.双馈风机低电压穿越控制策略的分析与研究[J].电力系统保护与控制,2011,39(21):28-33. Zhang Jianhua,Wang Jian,Chen Xingying.Analysis of DFIG-based wind generation LVRT control strategy[J].Power System Protection and Control,2011,39(21):28-33. [19]Beltran B,Benbouzid M E H,Ahmed-Ali T.Second-order sliding mode control of a doubly fed induction generator driven wind turbine[J].IEEE Transactions on Energy Conversion,2012,27(2):261-269. [20]Morren J,Haan S W H.Short-circuit current of wind turbines with doubly fed induction generator[J].IEEE Transactions on Energy Conversion,2007,22(1):174-180. |
|
|
|