|
|
Review of Operation Technology of Doubly-Fed Induction Generator-Based Wind Power System under Nonideal Grid Conditions |
Wang Tao1, Zhu Ziqiang1, Nian Heng2 |
1. Department of Electronic and Electrical Engineering University of Sheffield Sheffield S10 2TN United Kingdom; 2. College of Electrical Engineering Zhejiang University Hangzhou 310027 China |
|
|
Abstract In recent years, with increasing complex grid environment and growing wind power penetration, the operation technique of doubly fed induction generator (DFIG) under nonideal grid conditions, including harmonic distortion, voltage unbalance, and voltage dip, has been a research hotspot. Under harmonic distorted and unbalanced grid conditions, some enhanced control strategies can be used to improve the performance of the DFIG itself or to benefit the power quality at the point of common coupling. When the grid voltage dips, protecting measures based on software or hardware are required to keep the DFIG connected to the grid and support the voltage restoration by providing reactive power. In this paper, the existing researches in the aforementioned fields are reviewed. Different technical solutions for DFIG operating under non-ideal grid conditions are compared, then the technical trends and potential research topics are discussed and prospected.
|
Received: 07 May 2019
Published: 12 February 2020
|
|
|
|
|
[1] 胡书举, 孟岩峰, 龚文明, 等. 非理想电网条件下双馈式风电机组的运行控制策略[J]. 电工技术学报, 2013, 28(5): 99-104. Hu Shuju, Meng Yanfeng, Gong Wenming, et al.Operation control strategy of DFIG wind turbine under non-ideal grid conditions[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 99-104. [2] Xu Lie, Wang Yi.Dynamic modeling and control of dfig-based wind turbines under unbalanced network conditions[J]. IEEE Transactions on Power Systems, 2007, 22(1): 314-323. [3] Xu Lie.Enhanced control and operation of DFIG-based wind farms during network unbalance[J]. IEEE Transactions on Energy Conversion, 2008, 23(4): 1073-1081. [4] Hu Jiabing, Nian Heng, Xu Hailiang, et al.Dynamic modeling and improved control of DFIG under distorted grid voltage conditions[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 163-175. [5] Xu Hailiang, Hu Jiabing, He Yikang.Integrated modeling and enhanced control of DFIG under unbalanced and distorted grid voltage conditions[J]. IEEE Transactions on Energy Conversion, 2012, 27(3): 725-736. [6] Shang Lei, Hu Jiabin.Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 362-373. [7] Zarei M E, Nicolás C V, Arribas J R.Improved Predictive direct power control of doubly fed induction generator during unbalanced grid voltage based on four vectors[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(2): 695-707. [8] Santos-Martin D, Rodriguez-Amenedo J L, Arnalte S. Direct power control applied to doubly fed induction generator under unbalanced grid voltage conditions[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2328-2336. [9] Santos-Martin D, Rodriguez-Amenedo J L, Arnalte S. Providing ride-through capability to a doubly fed induction generator under unbalanced voltage dips[J]. IEEE Transactions on Power Electronics, 2009, 24(7): 1747-1757. [10] Xiong Pinghua, Sun Dan.Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4216-4225. [11] Zhang Yongchang, Jiao Jian, Xu Donglin.Direct power control of doubly fed induction generator using extended power theory under unbalanced network[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12024-12037. [12] Sun Dan, Wang Xiaohe, Nian Heng, et al.A sliding-mode direct power control strategy for DFIG under both balanced and unbalanced grid conditions using extended active power[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1313-1322. [13] Xu Lie.Coordinated control of DFIG's rotor and grid side converters during network unbalance[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1041-1049. [14] Zhou Yi, Bauer P, Ferreira J A, et al.Operation of grid-connected DFIG under unbalanced grid voltage condition[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 240-246. [15] Hu Jiabing, He Yikang.Reinforced control and operation of DFIG-based wind-power-generation system under unbalanced grid voltage conditions[J]. IEEE Transactions on Energy Conversion, 2009, 24(4): 905-915. [16] Hu Jiabing, He Yikang, Xu Lie, et al.Improved control of DFIG systems during network unbalance using PI-R current regulators[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 439-451. [17] Nian Heng, Song Yipeng.Optimised parameter design of proportional integral and resonant current regulator for doubly fed induction generator during grid voltage distortion[J]. IET Renewable Power Generation, 2014, 8(3): 299-313. [18] Xu Hailiang, Hu Jiabing, He Yikang.Operation of wind-turbine-driven DFIG systems under distorted grid voltage conditions: analysis and experimental validations[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2354-2366. [19] Chen Jiansheng, Zhang Wei, Chen Bojian, et al.Improved vector control of brushless doubly fed induction generator under unbalanced grid conditions for offshore wind power generation[J]. IEEE Transactions on Energy Conversion, 2016, 31(1): 293-302. [20] Hu Jiabing, Xu Hailiang, He Yikang.Coordinated control of DFIG's RSC and GSC under generalized unbalanced and distorted grid voltage conditions[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2808-2819. [21] Liu Changjin, Blaabjerg F, Chen W J, et al.Stator current harmonic control with resonant controller for doubly fed induction generator[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3207-3220. [22] Song Yipeng, Nian Heng.Enhanced grid-connected operation of DFIG using improved repetitive control under generalized harmonic power grid[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1019-1029. [23] Song Yipeng, Nian Heng.Sinusoidal output current implementation of DFIG using repetitive control under a generalized harmonic power grid with frequency deviation[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6751-6762. [24] Pang Bo, Nian Heng, Wu Chao, et al.Stator harmonic current suppression for DFIG system considering integer harmonics and inter-harmonics[J]. IEEE Transactions on Industrial Electronics, Ealy Access, 2018, DOI: 10.1109/TIE.2018.2878134. [25] Zhou Peng, He Yikang, Sun Dan.Improved direct power control of a DFIG-based wind turbine during network unbalance[J]. IEEE Transactions on Power Electronics, 2009, 24(11): 2465-2474. [26] Nian Heng, Song Yipeng, Zhou Peng, et al.Improved direct power control of a wind turbine driven doubly fed induction generator during transient grid voltage unbalance[J]. IEEE Transactions on Energy Conversion, 2011, 26(3): 976-986. [27] 周波, 宋亦鹏, 年珩, 等.负序及谐波畸变电网电压下双馈风力发电系统的改进直接功率控制策略[J]. 电工技术学报, 2017, 32(24): 233-243. Zhou Bo, Song Yipeng, Nian Heng, et al.Improved direct power control strategy of DFIG system under unbalanced and distorted grid voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(24) : 233-243. [28] Nian Heng, Song Yipeng.Direct power control of doubly fed induction generator under distorted grid voltage[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 894-905. [29] Cheng Chenwen, Cheng Peng, Nian Heng, et al.Model predictive stator current control of doubly fed induction generator during network unbalance[J]. IET Power Electronics, 2018, 11(1): 120-128. [30] Cheng Chenwen, Nian Heng.Low-complexity model predictive stator current control of DFIG under harmonic grid voltages[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1072-1080. [31] Gontijo G F, Tricarico T C, Franca B W, et al.Robust model predictive rotor current control of a DFIG connected to a distorted and unbalanced grid driven by a direct matrix converter[J]. IEEE Transactions on Sustainable Energy, 2018, DOI: 10.1109/TSTE. 2018.2868406. [32] Wang Yun, Wu Qiuwei, Gong Wenming, et al.H∞ robust current control for DFIG-based wind turbine subject to grid voltage distortions[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 816-825. [33] Abad G, Rodríguez M Á, Iwanski G, et al.Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage[J]. IEEE Transactions on Power Electronics, 2010, 25(2): 442-452. [34] Baggu M M, Chowdhury B H, Kimball J W.Comparison of advanced control techniques for grid side converter of doubly-fed induction generator back-to-back converters to improve power quality performance during unbalanced voltage dips[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 516-524. [35] Hu Jiefeng, Zhu Jianguo, Dorrell D G.Predictive direct power control of doubly fed induction generators under unbalanced grid voltage conditions for power quality improvement[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 943-950. [36] Liu Xiangjie, Kong Xiaobing.Nonlinear model predictive control for DFIG-based wind power generation[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(4): 1046-1055. [37] Sun Dan, Wang Xiaohe.Low-complexity model predictive direct power control for DFIG under both balanced and unbalanced grid conditions[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 5186-5196. [38] Brekken T K A, Mohan N. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 129-135. [39] Nian Heng, Cheng Peng, Zhu Z Q.Independent operation of DFIG-based WECS using resonant feedback compensators under unbalanced grid voltage conditions[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3650-3661. [40] Song Yipeng, Nian Heng.Modularized control strategy and performance analysis of DFIG system under unbalanced and harmonic grid voltage[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4831-4842. [41] Cheng Peng, Nian Heng.Collaborative control of DFIG system during network unbalance using reduced-order generalized integrators[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 453-464. [42] Nian Heng, Cheng Peng, Zhu Z Q.Coordinated direct power control of DFIG system without phase-locked loop under unbalanced grid voltage conditions[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 2905-2918. [43] Liu Changjin, Xu Dehong, Zhu Nan, et al.DC-voltage fluctuation elimination through a DC-capacitor current control for DFIG converters under unbalanced grid voltage conditions[J]. IEEE Transactions on Power Electronics, 2013, 28(7): 3206-3218. [44] Pena R, Cardenas R, Escobar E, et al.Control system for unbalanced operation of stand-alone doubly fed induction generators[J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 544-545. [45] Jain A K, Ranganathan V T.Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid[J]. IEEE Transactions on Industrial Electronics, 2008, 55(1): 218-228. [46] Moreira A B, Barros T A D S, Teixeira V S D C, et al. Control of powers for wind power generation and grid current harmonics filtering from doubly fed induction generator: comparison of two strategies[J]. IEEE Access, 2019, 7: 32703-32713. [47] Toufik B, Machmoum M, Poitiers F.Doubly fed induction generator with active filtering function for wind energy conversion system[C]//2005 European Conference on Power Electronics and Applications, Dresden, Germany, 2005: 1-9. [48] Djeghloud H, Bentounsi A, Benalla H.Simulation of a DFIG-based wind turbine with active filtering function using Matlab/Simulink[C]//The XIX International Conference on Electrical Machines ICEM 2010, Rome, Italy, 2010: 1-7. [49] Todeschini G, Emanuel A E.Wind energy conversion systems as active filters: design and comparison of three control methods[J]. IET Renewable Power Generation, 2010, 4(4): 341-353. [50] Tremblay E, Chandra A, Lagace P J.Grid-side converter control of DFIG wind turbines to enhance power quality of distribution network[C]//2006 IEEE Power Engineering Society General Meeting, Montreal, Que, Canada, 2006: 1-6. [51] Cheng Ming, Jiang Yunlei, Han Peng, et al.Unbalanced and low-order harmonic voltage mitigation of stand-alone dual-stator brushless doubly fed induction wind generator[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9135-9146. [52] Phan V, Lee H.Improved predictive current control for unbalanced stand-alone doubly-fed induction generator-based wind power systems[J]. IET Electric Power Applications, 2011, 5(3): 275-287. [53] Phan V, Lee H.Stationary frame control scheme for a stand-alone doubly fed induction generator system with effective harmonic voltages rejection[J]. IET Electric Power Applications, 2011, 5(9): 697-707. [54] Phan V, Lee H.Control Strategy for harmonic elimination in stand-alone DFIG applications with nonlinear loads[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2662-2675. [55] Phan V, Lee H.Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers[J]. IEEE Transactions on Industry Applications, 2012, 48(1): 199-210. [56] Wang Y, Xu L, Williams B W.Compensation of network voltage unbalance using doubly fed induction generator-based wind farms[J]. IET Renewable Power Generation, 2009, 3(1): 12-22. [57] Xu Wei, Yu Kailiang, Liu Yi, et al.Improved coordinated control of standalone brushless doubly-fed induction generator supplying nonlinear loads[J]. IEEE Transactions on Industrial Electronics, Early Access, DOI: 10.1109/TIE.2018.2885738. [58] Nian Heng, Wang Tao, Zhu Z Q.Voltage imbalance compensation for doubly fed induction generator using direct resonant feedback regulator[J]. IEEE Transactions on Energy Conversion, 2016, 31(2): 614-626. [59] Wei Feng, Zhang Xinan, Vilathgamuwa D M, et al.Mitigation of distorted and unbalanced stator voltage of stand-alone doubly fed induction generators using repetitive control technique[J]. IET Electric Power Applications, 2013, 7(8): 654-663. [60] Wang Tao, Nian Heng, Zhu Z Q.Flexible unbalance compensation strategy for doubly fed induction generator based on a novel indirect virtual impedance method[J]. IET Renewable Power Generation, 2018, 12(1): 28-36. [61] Wang Tao, Nian Heng, Zhu Z Q, et al.Flexible PCC voltage unbalance compensation strategy for autonomous operation of parallel DFIGs[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4807-4820. [62] Wang Tao, Kong Liang, Nian Heng, et al.Coordinated elimination strategy of low order output current distortion for LC-filtered DFIG system based on hybrid virtual impedance method[J]. IEEE Transactions on Power Electronics, Early Access, DOI: 10.1109/TPEL.2018.2879684. [63] Lopez J, Sanchis P, Roboam X, et al.Dynamic behavior of the doubly fed induction generator during three-phase voltage dips[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 709-717. [64] LÓpez J, GubÍa E, Sanchis P, et al.Wind turbines based on doubly fed induction generator under asymmetrical voltage dips[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 321-330. [65] Amalorpavaraj R A J, Kaliannan P, Padmanaban S, et al. Improved fault ride through capability in DFIG based wind turbines using dynamic voltage restorer with combined feed-forward and feed-back control[J]. IEEE Access, 2017, 5: 20494-20503. [66] Flannery P S, Venkataramanan G.A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter[J]. IEEE Transactions on Power Electronics, 2008, 23(3): 1126-1135. [67] Flannery P S, Venkataramanan G.Unbalanced voltage sag ride-through of a doubly fed induction generator wind turbine with series grid-side converter[J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1879-1887. [68] Kanjiya P, Ambati B B, Khadkikar V.A novel fault-tolerant DFIG-based wind energy conversion system for seamless operation during grid faults[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1296-1305. [69] Ambati B B, Kanjiya P, Khadkikar V.A low component count series voltage compensation scheme for DFIG WTs to enhance fault ride-through capability[J]. IEEE Transactions on Energy Conversion, 2015, 30(1): 208-217. [70] Huang P, Moursi M S E, Hasen S A. Novel fault ride-through scheme and control strategy for doubly fed induction generator-based wind turbine[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 635-645. [71] Morren J, Haan S W H. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 435-441. [72] Meegahapola L G, Littler T, Flynn D.Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults[J]. IEEE Transactions on Sustainable Energy, 2010, 1(3): 152-162. [73] 徐玉琴, 曹璐璐. 双馈感应发电机暂态特性分析及crowbar阻值优化[J]. 电工技术学报, 2017, 32(4): 93-100. Xu Yuqin, Cao Lulu.Transient characteristics analysis of doubly fed induction generator and resistance optimization of crowbar circuit[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 93-100. [74] Yang Jin, Fletcher J E, O’Reilly J. A series-dynamic-resistor-based converter protection scheme for doubly-fed induction generator during various fault conditions[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 422-432. [75] 周士琼, 王倩, 吕潇, 等. 定子Crowbar 电路模式切换的双馈风力发电机组低电压穿越控制策略[J]. 电力系统保护与控制, 2017, 45(4): 33-39. Zhou Shiqiong, Wang Qian, Lu Xiao, et al.Control strategy of low voltage ride-through for double-fed wind generator with the stator crowbar circuit mode switch[J]. Power System Protection and Control, 2017, 45(4): 33-39. [76] 严干贵, 侯延鹏, 王健, 等. 抑制超速脱网的双馈感应风电机组低电压穿越控制策略研究[J].电工技术学报, 2015, 30(23): 146-154. Yan Gangui, Hou yanpeng, Wang Jian, et al. A DFIG wind turbine low-voltage ride-through control strategy restraining over-speed-tripping-off from grid[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 146-154. [77] Long Teng, Shao Shiyi, Malliband P, et al.Crowbarless fault ride-through of the brushless doubly fed induction generator in a wind turbine under symmetrical voltage dips[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2833-2841. [78] Long Teng, Shao Shiayi, Abdi E, et al.Asymmetrical low-voltage ride through of brushless doubly fed induction generators for the wind power generation[J]. IEEE Transactions on Energy Conversion, 2013, 28(3): 502-511. [79] Elshiekh M E, Mansour D A, Azmy A M.Improving fault ride-through capability of DFIG-based wind turbine using superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5601204. [80] Firouzi M, Gharehpetian G B.LVRT performance enhancement of DFIG-based wind farms by capacitive bridge-type fault current limiter[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1118-1125. [81] Alaraifi S, Moawwad A, Moursi M S E, et al. Voltage booster schemes for fault ride-through enhancement of variable speed wind turbines[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4): 1071-1081. [82] Guo Wenyong, Xiao Liye, Dai Shaotao.Enhancing low-voltage ride-through capability and smoothing output power of DFIG with a superconducting fault-current limiter-magnetic energy storage system[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 277-295. [83] Mohammadi J, Afsharnia S, Vaez-Zadeh S, et al.Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults[J]. IET Renewable Power Generation, 2016, 10(8): 1114-1122. [84] Guo W Y, Xiao L Y, Dai S T, et al.LVRT capability enhancement of DFIG with switch-type fault current limiter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 332-342. [85] Jalilian A, Naderi S B, Negnevitsky M, et al.Controllable DC-link fault current limiter augmentation with DC chopper to improve fault ride-through of DFIG[J]. IET Renewable Power Generation, 2017, 11(2): 313-324. [86] Naderi S B, Negnevitsky M, Muttaqi K M.A modified DC chopper for limiting the fault current and controlling the DC-Link voltage to enhance fault ride-through capability of doubly-fed induction-generator-based wind turbine[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 2021-2032. [87] Abbey C, Joos G.Supercapacitor energy storage for wind energy applications[J]. IEEE Transactions on Industry Applications, 2007, 43(3): 769-776. [88] Moursi H L M S E, Zeineldin H H. A parallel capacitor control strategy for enhanced FRT capability of DFIG[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 303-312. [89] Kasem A H, El-Saadany E F, El-Tamaly H H, et al. An improved fault ride-through strategy for doubly fed induction generator-based wind turbines[J]. IET Renewable Power Generation, 2008, 2(4): 201-214. [90] Shen Yangwu, Ke Deping, Qiao Wei, et al.Transient reconfiguration and coordinated control for power converters to enhance the LVRT of a DFIG wind turbine with an energy storage device[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1679-1690. [91] 刘巨, 姚伟, 侯云鹤, 等. 一种储能改善低电压穿越期间风电场注入电流特性的致稳策略[J]. 电工技术学报, 2016, 31(14): 93-103. Liu Ju, Yao Wei, Hou Yunhe, et al.Stability control for improving the characteristic of wind farm injection current during low voltage ride-through using energy storage system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 93-103. [92] Liang J Q, Qiao W, Harley R G.Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 836-843. [93] Liang Jiaqi, Howard D F, Restrepo J A, et al.Feedforward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1452-1463. [94] Liu Sumei, Yang Qixun, Jia Ke, et al.Coordinated fault-ride-through strategy for doubly-fed induction generators with enhanced reactive and active power support[J]. IET Renewable Power Generation, 2016, 10(2): 203-211. [95] Zhu Donghai, Zou Xudong, Deng Lu, et al.Inductance-emulating control for DFIG-based wind turbine to ride-through grid faults[J]. IEEE Transactions on Power Electronics, 2017, 32(11): 8514-8525. [96] Campos-Gaona D, Moreno-Goytia E L, Anaya-Lara O. Fault ride-through improvement of DFIG-WT by integrating a two-degrees-of-freedom internal model control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(3): 1133-1145. [97] Mohseni M, Islam S, Masoum M A S. Fault ride-through capability enhancement of doubly-fed induction wind generators[J]. IET Renewable Power Generation, 2011, 5(5): 368-376. [98] Mohseni M, Islam S M.Transient control of DFIG-based wind power plants in compliance with the australian grid code[J]. IEEE Transactions on Power Electronics, 2012, 27(6):2813-2824. [99] Villanueva I, Rosales A, Ponce P, et al.Grid-voltage-oriented sliding mode control for DFIG under balanced and unbalanced grid faults[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1090-1098. [100] Xiang Dawei, Ran Li, Tavner P J, et al.Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 652-662. [101] Hu Sheng, Lin Xinchun, Kang Yong, et al.An improved low-voltage ride-through control strategy of doubly fed induction generator during grid faults[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3653-3665. [102] Xiao Shuai, Yang Geng, Zhou Honglin, et al.An LVRT control strategy based on flux linkage tracking for DFIG-based WECS[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2820-2832. [103] Hu Jiabing, Wang Bo, Wang Weisheng, et al.Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 720-730. [104] Zhou Linyuan, Liu Jinjun, Zhou Sizhan.Improved demagnetization control of a doubly-fed induction generator under balanced grid fault[J]. IEEE Transactions on Power Electronics, 2015, 30(12): 6695-6705. [105] Zhu Rongwu, Chen Zhe, Wu Xiaojie, et al.Virtual damping flux-based LVRT control for DFIG-based wind turbine[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 714-725. [106] Huang Qingjun, Zou Xudong, Zhu Donghai, et al.Scaled current tracking control for doubly fed induction generator to ride-through serious grid faults[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2150-2165. [107] 陈鉴庆, 邹旭东, 梁宗泽, 等. 基于反向电流跟踪的双馈风机低电压穿越控制策略[J]. 电工技术学报, 2016, 31(2): 221-229. Chen Jianqing, Zou Xudong, Liang Zongze, et al.An improved control strategy of doubly-fed wind turbine under voltage dips based on reverse current tracking[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 221-229. [108] Zhou Dao, Blaabjerg F.Optimized demagnetizing control of DFIG power converter for reduced thermal stress during symmetrical grid fault[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10326-10340. [109] Chen Wenjie, Xu Dehong, Zhu Nan, et al.Control of doubly-fed induction generator to ride-through recurring grid faults[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4831-4846. [110] 年珩, 程鹏, 诸自强. 电网电压对称故障时DFIG转子电流的优化控制策略[J]. 电工技术学报, 2014, 29(7): 200-208. Nian Heng, Cheng Peng, Zhu Ziqiang, et al.Optimized control strategy of rotor current for doubly fed induction generators during symmetrical voltage fault[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 200-208. [111] Li Xiaoming, Zhang Xiuyu, Lin Zhongwei, et al.An improved flux magnitude and angle control with LVRT capability for DFIGs[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3845-3853. [112] Yang Lihui, Xu Zhao, Ostergaard J, et al.Advanced control strategy of DFIG wind turbines for power system fault ride through[J]. IEEE Transactions on Power Systems, 2012, 27(2): 713-722. [113] Xie Dongliang, Xu Zhao, Yang Lihui, et al.A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3302-3310. [114] Vrionis T D, Koutiva X I, Vovos N A.A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1325-1334. [115] 刁统山, 王秀和. 计及定子励磁电流变化的永磁双馈发电机零转矩控制策略[J]. 电工技术学报, 2014, 29(7): 173-180. Diao Tongshan, Wang Xiuhe.Zero torque control strategy for permanent magnet doubly fed induction generators considering stator excitation current change[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 173-180. [116] 尹俊, 毕天姝, 薛安成, 等. 计及低电压穿越控制的双馈风力发电机组短路电流特性与故障分析方法研究[J]. 电工技术学报, 2015, 30(23): 116-125. Yin Jun, Bi Tianshu, Xue Ancheng, et al.Study on short circuit current and fault analysis method of double fed induction generator with low voltage ride-through control strategy[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 116-125. [117] 欧阳金鑫, 唐挺, 郑迪, 等. 低电压穿越控制下双馈风电机组短路电流特性与计算方法[J]. 电工技术学报, 2017, 32(22): 216-224. Ouyang Jinxin, Tang Ting, Zheng Di, et al.Characteristics and calculation method of short-circuit current of doubly fed wind generator under lower voltage ride through[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 216-224. [118] 张阳, 黄科元, 黄守道. 一种双馈风力发电系统低电压穿越控制策略[J]. 电工技术学报, 2015, 30(增刊2): 153-158. Zhang Yang, Huang Keyuan, Huang Shoudao.Low voltage ride-through control strategy of doubly fed induction generator[J]. Transactions of China Electrotechnical Society, 2015, 30(S2): 153-158. [119] Geng Hua, Liu Cong, Yang Geng.LVRT capability of DFIG-based WECS under asymmetrical grid fault condition[J]. IEEE Transactions on Industrial Electronics, 2013, 60(6): 2495-2509. [120] Gomis-Bellmunt O, Junyent-FerrÉ A, Sumper A, et al.Ride-through control of a doubly fed induction generator under unbalanced voltage sags[J]. IEEE Transactions on Energy Conversion, 2008, 23(4): 1036-1045. [121] 王振树, 刘岩, 雷鸣, 等. 基于Crowbar的双馈机组风电场等值模型与并网仿真分析[J]. 电工技术学报, 2015, 30(4): 44-51. Wang Zhenshu, Liu Yan, Lei Ming, et al.Doubly-fed induction generator wind farm aggregated model based on crowbar and integration simulation analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 44-51. |
|
|
|