|
|
Overview of Dual-Electrical-Port Dual-Mechanical-Port Machine System and Their Development |
Liang Ziyi, Qu Ronghai, Chen Zhi, Ren Xiang, Li Dawei |
School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract The dual-electrical-port dual-mechanical-port (DEP-DMP) machine is a new type of multi-functional integrated machine, which contains at least two rotors and two sets of windings. DEP-DMP machine is used to realize power transmission and distribution between multiple mechanical-ports and electrical-ports, and decouple control of torques and speeds of two mechanical-ports. It has the advantages of high compactness, high integration and multi-port cooperative operation, and has good application potential in the fields of wind power generation, new energy vehicles, and hybrid ships. This paper firstly introduces the structure and operation principle of the DEP-DMP machine, and briefly analyzes the way to achieve multi-function. The research and innovation of the brushed and brushless DEP-DMP machines on the topology structure are classified, and the advantages and disadvantages of each are summarized. Then, the DEP-DMP machine control methods are introduced from the three aspects of decoupling control, capacity management and dynamic and steady-state optimization. Finally, the research direction and development trend of the DEP-DMP machines are prospected.
|
Received: 01 July 2022
|
|
|
|
|
[1] Chau K T, Chan C C, Liu Chunhua.Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2246-2257. [2] Zhang Xiaowu, Li C T, Kum D, et al.Prius(+) and volt(-): configuration analysis of power-split hybrid vehicles with a single planetary gear[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3544-3552. [3] Zhao Zhiguo, Tang Peng, Li Haodi.Generation, screening, and optimization of powertrain configurations for power-split hybrid electric vehicle: a comprehensive overview[J]. IEEE Transactions on Transportation Electrification, 2022, 8(1): 325-344. [4] Pei Huanxin, Hu Xiaosong, Yang Yalian, et al.Designing multi-mode power split hybrid electric vehicles using the hierarchical topological graph theory[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7159-7171. [5] 徐奇伟, 孙静, 杨云, 等. 用于混合动力车的复合结构永磁电机电磁优化设计[J]. 电工技术学报, 2020, 35(增刊1): 126-135. Xu Qiwei, Sun Jing, Yang Yun, et al.Electromagnetic optimization design of compound-structure permanent-magnet motor for hybrid electric vehicle[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 126-135. [6] Cheng Ming, Han Peng, Buja G, et al.Emerging multiport electrical machines and systems: past developments, current challenges, and future prospects[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5422-5435. [7] 黄海林, 李大伟, 曲荣海, 等. 磁齿轮复合永磁电机拓扑及应用综述[J]. 电工技术学报, 2022, 37(6): 1381-1397. Huang Hailin, Li Dawei, Qu Ronghai, et al.A review of magnetic geared machines: topologies and applications[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1381-1397. [8] Eriksson S, Sadarangani C.A four-quadrant HEV drive system[C]//Proceedings IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 2002: 1510-1514. [9] Nordlund E, Eriksson S.Test and verification of a four-quadrant transducer for HEV applications[C]//2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 2005: 5. [10] Zheng Ping, Liu Ranran, Thelin P, et al.Research on the cooling system of a 4QT prototype machine used for HEV[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 61-67. [11] Sun Xikai, Cheng Ming.Thermal analysis and cooling system design of dual mechanical port machine for wind power application[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1724-1733. [12] Xu Longya.A new breed of electric machines-basic analysis and applications of dual mechanical port electric machines[C]//2005 International Conference on Electrical Machines and Systems, Nanjing, China, 2005: 24-31. [13] Xu Longya.Dual-mechanical-port electric machines-concept and application of a new electric[J]. IEEE Industry Applications Magazine, 2009, 15(4): 44-51. [14] Zhang Zhiwei, Zhang Changgeng.Rare earth-free dual mechanical port machine with spoke-type PM outer-rotor for electric variable transmission system[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-5. [15] Zhang Zhiwei.Analysis of a rare earth-free dual mechanical port machine with PM-assisted reluctance rotor for hybrid electric vehicles[C]//2019 IEEE International Electric Machines & Drives Conference, San Diego, CA, USA, 2019: 965-969. [16] Hoeijmakers M J, Rondel M.The electrical variable transmission in a city bus[C]//2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 2004: 2773-2778. [17] Hoeijmakers M J, Ferreira J A.The electric variable transmission[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 1092-1100. [18] 黄文祥, 张千帆, 崔淑梅, 等. 感应式电气变速器的电磁耦合与解耦控制[J]. 电机与控制学报, 2011, 15(5): 16-21. Huang Wenxiang, Zhang Qianfan, Cui Shumei, et al.Induction type electrical variable transmission's electromagnetic coupling and its decoupling control[J]. Electric Machines and Control, 2011, 15(5): 16-21. [19] Druant J, Vansompel H, de Belie F, et al. Torque analysis on a double rotor electrical variable transmission with hybrid excitation[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 60-68. [20] Cui Shumei, Yuan Yongjie, Wang Tiecheng.Research on switched reluctance double-rotor motor used for hybrid electric vehicle[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 3393-3396. [21] 韩守亮. 用于传动系统的开关磁阻式双转子电机的基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. [22] 陈云云, 全力, 朱孝勇, 等. 新型定子永磁式双转子电机运行模式分析与实验研究[J]. 中国电机工程学报, 2014, 34(33): 5895-5901. Chen Yunyun, Quan Li, Zhu Xiaoyong, et al.Analysis and experimental study on operational modes of a novel stator-permanent-magnet double-rotor motor[J]. Proceedings of the CSEE, 2014, 34(33): 5895-5901. [23] 刘修福, 全力, 朱孝勇, 等. 混合动力汽车用新型磁通切换双转子电机性能分析[J]. 微特电机, 2013, 41(1): 20-23, 53. Liu Xiufu, Quan Li, Zhu Xiaoyong, et al.Characteristics analysis of a novel flux switching dual rotor motor used for hybrid electrics vehicles[J]. Small & Special Electrical Machines, 2013, 41(1): 20-23, 53. [24] Fan Tao, Wen Xuhui, Chen Jingwei, et al.Permanent magnet dual mechanical port machine design for hybrid electric vehicle application[C]//2008 IEEE International Conference on Industrial Technology, Chengdu, China, 2008: 1-5. [25] 陈骁, 黄声华, 万山明, 等. 无刷双馈双机械端口电机原理及数学建模[J]. 微电机, 2009, 42(12): 5-8, 33. Chen Xiao, Huang Shenghua, Wan Shanming, et al.Principle and mathematic model of the brushless doubly-fed electrical variable transmission[J]. Micromotors, 2009, 42(12): 5-8, 33. [26] 吴健瑜, 罗玉涛, 黄向东. 电磁耦合无级变速器温度场分析与冷却方法研究[J]. 中国机械工程, 2011, 22(8): 887-891. Wu Jianyu, Luo Yutao, Huang Xiangdong.Study on thermal field and cooling method of electromagnetic continuously variable transmission[J]. China Mechanical Engineering, 2011, 22(8): 887-891. [27] Atallah K, Howe D.A novel high-performance magnetic gear[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2844-2846. [28] Wang Jiabin, Atallah K, Carvley S D.A magnetic continuously variable transmission device[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2815-2818. [29] Atallah K, Wang Jiabin, Calverley S D, et al.Design and operation of a magnetic continuously variable transmission[J]. IEEE Transactions on Industry Applications, 2012, 48(4): 1288-1295. [30] 白金刚. 混合动力汽车用径向磁场调制型无刷双转子电机的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. [31] Bai Jingang, Zheng Ping, Tong Chengde, et al.Characteristic analysis and verification of the magnetic-field-modulated brushless double-rotor machine[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4023-4033. [32] Bai Jingang, Liu Jiaqi, Zheng Ping, et al.Design and analysis of a magnetic-field modulated brushless double-rotor machine—part I: pole pair combination of stator, PM rotor and magnetic blocks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2540-2549. [33] Bai Jingang, Liu Jiaqi, Liu Guopeng, et al.Investigation of the power factor of magnetic-field modulated brushless double-rotor machine[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 423-432. [34] Bai Jingang, Liu Jiaqi, Zheng Ping, et al.Design and analysis of a magnetic-field modulated brushless double-rotor machine—part I: pole pair combination of stator, PM rotor and magnetic blocks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2540-2549. [35] Bai Jinggang, Zheng Ping, Cheng Luming, et al.A new magnetic-field-modulated brushless double-rotor machine[J]. IEEE Transactions on Magnetics, 2015, 51(11): 8112104. [36] Sun Le, Cheng Ming, Jia Hongyun.Analysis of a novel magnetic-geared dual-rotor motor with complementary structure[J]. IEEE Transactions on Industrial Electronics, 2015, 62(11): 6737-6747. [37] Sun Wei, Li Qiang, Sun Le, et al.Development and investigation of novel axial-field dual-rotor segmented switched reluctance machine[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 754-765. [38] Chmelicek P, Calverley S, Dragan R S, et al.Dual rotor magnetically geared power split device for hybrid electric vehicles[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-6. [39] Bai Jingang, Liu Yong, Tong Chengde, et al.Investigation into a magnetic-field-modulated brushless double-rotor machine with the high-strength and low-loss modulating ring rotor[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [40] Wang Mingqiao, Tong Chengde, Song Zhiyi, et al.Performance analysis of an axial magnetic-field-modulated brushless double-rotor machine for hybrid electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 806-817. [41] Jian Linni, Chau K T.Design and analysis of a magnetic-geared electronic-continuously variable transmission system using finite element method[J]. Progress in Electromagnetics Research, 2010, 107: 47-61. [42] Jian Linni, Xu Guoqing, Wu Yuanyuan, et al.A novel power-train using coaxial magnetic gear for power-split hybrid electric vehicles[C]//2011 International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-6. [43] Niu Shuangxia, Ho S L, Fu W N.A novel double-stator double-rotor brushless electrical continuously variable transmission system[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3909-3912. [44] Liu Yulong, Niu Shuangxia, Fu Weinong.Design of an electrical continuously variable transmission based wind energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6745-6755. [45] Wang Yunchong, Niu Shuangxia, Fu Weinong.Electrical-continuously variable transmission system based on doubly fed flux-bidirectional modulation[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 2722-2731. [46] Wang Yunchong, Niu Shuangxia, Fu Weinong.Sensitivity analysis and optimal design of a dual mechanical port bidirectional flux-modulated machine[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 211-220. [47] Li Dawei, Qu Ronghai, Ren Xiang, et al.Brushless dual-electrical-port, dual mechanical port machines based on the flux modulation principle[C]//2016 IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA, 2016: 1-8. [48] Ren Xiang, Li Dawei, Qu Ronghai, et al.A brushless dual-mechanical-port dual-electrical-port machine with spoke array magnets in flux modulator[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-6. [49] Ren Xiang, Li Dawei, Qu Ronghai, et al.Analysis of spoke-type brushless dual-electrical-port dual-mechanical-port machine with decoupled windings[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6128-6140. [50] Liang Ziyi, Ren Xiang, Li Dawei, et al.Analysis of a spoke-array brushless dual-electrical-port dual-mechanical-port machine with reluctance rotor[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 2999-3011. [51] Xu Lingya, Zhang Yuan, Wen Xuhui.Multioperational modes and control strategies of dual-mechanical-port machine for hybrid electrical vehicles[J]. IEEE Transactions on Industry Applications, 2009, 45(2): 747-755. [52] Erik N.The four-quadrant transducer system for hybrid electric vehicles[D]. Stockholm: Royal Institute of Technology, 2005. [53] Du Jinhua, Xue Yuntian, Liu Quanwei, et al.Improved analytical model for inductance calculations of a dual-rotor permanent magnet reluctance machine based on magnetic networks[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5822-5832. [54] Du Jinhua, Xue Yuntian, Yang Xintuan.Modeling and inner-outer decoupling of dual-rotor machines for continuous variable transmission systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8472-8483. [55] 庞珽, 陈骁, 黄声华, 等. 电无级变速器的内燃机最佳效率控制[J]. 电工技术学报, 2011, 26(6): 26-32. Pang Ting, Chen Xiao, Huang Shenghua, et al.ICE optimal efficiency control of electrical variable transmission[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 26-32. [56] Cheng Yuan, Cui Shumei, Song Liwei, et al.The study of the operation modes and control strategies of an advanced electromechanical converter for automobiles[J]. IEEE Transactions on Magnetics, 2007, 43(1): 430-433. [57] Cheng Yuan, Trigui R, Espanet C, et al.Specifications and design of a PM electric variable transmission for Toyota prius II[J]. IEEE Transactions on Vehicular Technology, 2011, 60(9): 4106-4114. [58] 徐奇伟, 宋立伟, 崔淑梅, 等. 基于电气变速器的混合动力车中动力分配策略[J]. 电工技术学报, 2013, 28(2): 44-54. Xu Qiwei, Song Liwei, Cui Shumei, et al.Force distribution strategy of hybrid electric vehicle based on electric variable transmission[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 44-54. [59] Tong Chengde, Wang Mingqiao, Zheng Ping, et al.Characteristic analysis and functional validation of a brushless flux-modulated double-rotor machine for HEVs[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 663-673. [60] 佟诚德. 电动汽车用无刷复合结构永磁同步电机控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [61] Liu Jiaqi, Tong Chengde, Jin Zengfeng, et al.Research on system control and energy management strategy of flux-modulated compound-structure permanent magnet synchronous machine[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(2): 100-108. [62] Luo Xiang, Niu Shuangxia, Fu W N.Design and sensorless control of a novel axial-flux permanent magnet machine for in-wheel applications[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5. [63] Han Xun, Kong Wubin, Qu Ronghai, et al.Flexible energy conversion control strategy for brushless dual-mechanical-port dual-electrical-port machine in hybrid vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3910-3920. [64] 刘航航, 韩力. 无刷双馈电机控制策略发展综述[J]. 微特电机, 2010, 38(6): 69-73. Liu Hanghang, Han Li.Overview on control strategies of brushless doubly-fed machines[J]. Small & Special Electrical Machines, 2010, 38(6): 69-73. [65] 卞松江, 贺益康, 潘再平. 级联式无刷双馈电机的建模与仿真[J]. 中国电机工程学报, 2001, 21(12): 33-37. Bian Songjiang, He Yikang, Pan Zaiping.Modeling and simulation of the cascade brushless doubly-fed machine[J]. Proceedings of the CSEE, 2001, 21(12): 33-37. [66] Zhu Ying, Cheng Ming, Hua Wei, et al.Dual-mode power control strategy for a new dual power flow wind power generation system[C]//2011 International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-6. [67] Sun Xikai, Cheng Ming, Zhu Ying, et al.Application of electrical variable transmission in wind power generation system[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1299-1307. [68] Zhu Ying, Cheng Ming, Hua Wei, et al.Sensorless control strategy of electrical variable transmission machines for wind energy conversion systems[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3383-3386. [69] Niu Shuangxia, Liu Yulong, Ho S L, et al.Development of a novel brushless power split transmission system for wind power generation application[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [70] Luo Xiang, Niu Shuangxia.A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6924-6935. [71] Druant J, de Belie F, Sergeant P, et al. Field-oriented control for an induction-machine-based electrical variable transmission[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4230-4240. [72] De Belie F, De Brabandere E, Druant J, et al.Model based predictive torque control of an electric variable transmission for hybrid electric vehicles[C]//2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 2016: 1203-1207. [73] Druant J, Vansompel H, de Belie F, et al. Loss identification in a double rotor electrical variable transmission[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7731-7740. [74] Bouheraoua M, Wang Jiabin, Atallah K.Design and implementation of an observer-based state feedback controller for a pseudo direct drive[J]. IET Electric Power Applications, 2013, 7(8): 643-653. [75] Bouheraoua M, Wang Jiabin, Atallah K.Slip recovery and prevention in pseudo direct drive permanent-magnet machines[J]. IEEE Transactions on Industry Applications, 2015, 51(3): 2291-2299. [76] Bouheraoua M, Wang Jiabin, Atallah K.Rotor position estimation of a pseudo direct-drive PM machine using extended Kalman filter[J]. IEEE Transactions on Industry Applications, 2017, 53(2): 1088-1095. |
|
|
|