|
|
Electronic Pole-Changing Strategy for Five-Phase Induction Motor Based on Rotor Flux Optimization |
Jia Huili1,2, Yang Jiaqiang1, Yang Guanghui1 |
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. Wuhu Institute of Technology Wuhu 241006 China |
|
|
Abstract The electronic pole-changing with exponential response torque tracking of five-phase induction motor (FIM) suffers from the problem of unsmooth operation. The analysis shows that that the rotor flux saturation is one of the main reasons. Therefore, a rotor flux optimization (RFO) electronic pole- changing control strategy is proposed considering the flux saturation. The superposition of the rotor flux of two control planes during the process of electronic pole-changing is the cause of flux saturation. The control function of the rotor flux is thus designed by the constraint functions of flux amplitude and electromagnetic torque to make the rotor flux approach the critical value, which optimizes the rotor flux control. Based on the Speedgoat hardware in the loop experimental platform of FIM, the proposed RFO method is verified through an experiment, and the electronic pole-changing control strategies of exponential response torque tracking with and without RFO are compared. The experimental results show that the proposed strategy reduces the speed fluctuation by 50% and the torque fluctuation by 67%, which effectively improves the smoothness of the motor during electronic pole-changing process.
|
Received: 14 June 2021
|
|
|
|
|
[1] Liu Chunhua.Emerging electric machines and drives-an overview[J]. IEEE Transactions Energy Con-version, 2018, 33(4): 2270-2280. [2] Zhao Nan, Schofield N A.Induction machine design with parameter optimization for a 120kW electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 592-601. [3] 闫文举, 陈昊, 马小平, 等. 不同转子极数下磁场解耦型双定子开关磁阻电机的研究[J]. 电工技术学报, 2021, 36(14): 2945-2956. Yan Wenju, Chen Hao, Ma Xiaoping, et al.Develop-ment and investigation on magnetic field decoupling double stator switched reluctance machine with different rotor pole numbers[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 2945-2956. [4] 卿龙, 王惠民, 葛兴来. 一种高效率开关磁阻电机转矩脉动抑制方法[J]. 电工技术学报, 2020, 35(9): 1912-1920. Qing Long, Wang Huimin, Ge Xinglai.A high efficiency torque ripple suppression method for switched reluctance motor[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1912-1920. [5] EL-Refaie A M, Osama M. High specific power electrical machines: a system perspective[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 88-93. [6] Li Kaibo, Bouscayrol A, Cui Shumei, et al.A hybrid modular cascade machines system for electric vehicles using induction machine and permanent magnet synchronous machine[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 273-281. [7] Baloch N, Atiq S, Kwon B A.Wound-field pole-changing vernier machine for electric vehicles[J]. IEEE Access, 2020, 8: 91865-91875. [8] 葛晓琳, 郝广东, 夏澍, 等. 考虑规模化电动汽车与风电接入的随机解耦协同调度[J]. 电力系统自动化, 2020, 44(4): 54-62. Ge Xiaolin, Hao Guangdong, Xia Shu, et al.Stochastic decoupling collaborative dispatch con-sidering integration of large-scale electric vehicles and wind power[J]. Automation of Electric Power Systems, 2020, 44(4): 54-62. [9] 宋雨浓, 林舜江, 唐智强, 等. 基于动态车流的电动汽车充电负荷时空分布概率建模[J]. 电力系统自动化, 2020, 44(23): 47-62. Song Yunong, Lin Shunjiang, Tang Zhiqiang, et al.Spatial temporal distribution probabilistic modeling of electric vehicle charging load based on dynamic traffic flow[J]. Automation of Electric Power Systems, 2020, 44(23): 47-62. [10] Nøland J K, Leandro M, Suul J A, et al.High-power machines and starter-generator topologies for more electric aircraft: a technology outlook[J]. IEEE Access, 2020, 8: 130104-130123. [11] Barrero F, Duran M J.Recent advances in the design, modeling, and control of multiphase machines-part I[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 449-458. [12] Osama M, Lipo T A.Modeling and analysis of a wide-speed-range induction motor drive based on elecmnic pole changing[J]. IEEE Transactions on Industry Applications, 1997, 33(5): 1177-3184. [13] Ge Baoming, Sun Dongsen, Wu Weiliang, et al.Winding design, modeling, and control for pole-phase modulation induction motors[J]. IEEE Transactions on Magnetics, 2013, 49(2): 898-911. [14] 杨家强, 高健, 黄进. 多相感应电机指数响应电子变极方法研究[J]. 中国电机工程学报, 2013, 33(27): 105-111. Yang Jiaqiang, Gao Jian, Huang Jin.Electronic pole-changing methods of multiphase induction motor based on exponent response[J]. Proceedings of the CSEE, 2013, 33(27): 105-111. [15] Yang Jiaqiang, Yin Rongsen, Zhang Xiaojun, et al.Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy[J]. Frontiers of Infor-mation Technology & Electronic Engineering, 2017, 18(8): 1151-1167. [16] 尹溶森, 杨磊, 杨家强, 等. 五相感应电机转矩跟踪电子变极方法[J]. 电机与控制学报, 2015, 19(1): 1-7. Yin Rongsen, Yang Lei, Yang Jiaqiang, et al.Elec-tronic pole-changing methods of five-phase induction machine based on torque tracking[J]. Electric Machines and Control, 2015, 19(1): 1-7. [17] Ershad N F, Mirsalim M, Aliabad A D.Line-start permanent magnet motors: proper design for pole-changing starting method[J]. IET Electric Power Applications, 2013, 7(6): 470-476. [18] Tian Mengmeng, Wang Xiuhe, Wang Daohan, et al.A novel line-start permanent magnet synchronous motor with 6/8 pole changing stator winding[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1164-1174. [19] Umesh B S, Sivakumar K.Pole-phase modulated multiphase IM drive with reduced torque ripple and improved DC link utilization[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7862-7869. [20] Reddy B P, Keerthipati S A.Multilevel inverter configuration for an open-end-winding pole-phase-modulated-multiphase induction motor drive using dual inverter principle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3035-3044. [21] Libbos E, Ku B, Agrawal S, et al.Loss minimization and maximum torque-per-ampere operation for variable-pole induction machines[J]. IEEE Transa-ctions on Transportation Electrification, 2020, 6(3): 1051-1064. [22] Latif T, Jaffar M Z M, Husain I. Modeling and control of a 4-pole/8-pole induction motor for smooth torque production during electronic pole changing[C]//IEEE Energy Conversion Congress and Exposition, Detroit, MI, USA, 2020: 2052-2057. [23] Mallampalli S, Zhu Z Q, Mipo J C, et al.48V starter-generator induction machine with pole-changing windings[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6324-6337. [24] Mallampalli S, Zhu Z Q, Mipo J C, et al.Six-phase pole-changing winding induction machines with improved performance[J]. IEEE Transactions on Energy Conversion, 2021, 33(3): 534-546. [25] Reddy B P, Rao A M, Sahoo M, et al.A fault-tolerant multilevel inverter for improving the performance of a pole-phase modulated nine-phase induction motor drive[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1107-1116. [26] Reddy B P, Keerthipati S.Linear modulation range and torque ripple profile improvement of PPMIM drives[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12120-12127. [27] Reddy B P, Keerthipati S.Multilayer fractional slot pole-phase modulated induction motor drives for traction applications[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9112-9119. [28] Lee J S, Choi G.Modeling and hardware-in-the-loop system realization of electric machine drives-a review[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 194-201. [29] 刘璐, 杜旭东, 王晓年. 考虑磁饱和的感应电机MTPA转矩控制[J]. 电工技术学报, 2017, 32(23): 42-50. Liu Lu, Du Xudong, Wang Xiaonian.MTPA torque control of induction motor considering magnetic saturation[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 42-50. [30] Bozhko S, Dymko S, Kovbasa S, et al.Maximum torque-per-amp control for traction IM drives: theory and experimental results[J]. IEEE Transactions on Industry Applications, 2017, 53(1): 181-193. [31] Wang Bo, Zhang Jing, Yu Yong, et al.Unified complex vector field-weakening control for induction motorhigh-speed drives[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 7000-7011. [32] 程明, 文宏辉, 曾煜, 等. 电机气隙磁场调制行为及其转矩分析[J]. 电工技术学报, 2020, 35(5): 921-930. Cheng Ming, Wen Honghui, Zeng Yu, et al.Analysis of airgap field modulation behavior and torque component in electric machines[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 921-930. [33] 孟繁庆, 易新强, 刘海涛, 等. 三次谐波注入下多相感应电机稳态性能分析[J]. 电工技术学报, 2020, 35(16): 3396-3405. Meng Fanqing, Yi Xinqiang, Liu Haitao, et al.Steady-state performance analysis of multiphase induction motor with third-order harmonic injection[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3396-3405. [34] 王明杰, 徐伟, 杨存祥, 等. 基于精确子域模型的永磁直线同步电机空载磁场解析计算[J]. 电工技术学报, 2020, 35(5): 942-953. Wang Mingjie, Xu Wei, Yang Cunxiang, et al.Analytical calculation of no-load magnetic field in permanent magnet linear synchronous motors based on an accurate subdomain model[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 942-953. [35] Levi E, Sokola M, Vukosavic S N.A method for magnetizing curve identification in rotor flux oriented induction machines[J]. IEEE Transactions on Energy Conversion, 2000, 15(2): 157-162. |
|
|
|