[1] 王丽婕, 廖晓钟, 高阳, 等. 风电场发电功率的建模和预测研究综述[J]. 电力系统保护与控制, 2009, 37(13): 118-121. Wang Lijie, Liao Xiaozhong, Gao Yang, et al.Summarization of modeling and prediction of wind power generation[J]. Power System Protection and Control, 2009, 37(13): 118-121. [2] 杨茂, 熊昊, 严干贵, 等. 基于数据挖掘和模糊聚类的风电功率实时预测研究[J]. 电力系统保护与控制, 2013, 41(1): 1-6. Yang Mao, Xiong Hao, Yan Gangui, et al.Real-time prediction of wind power based on data mining and fuzzy clustering[J]. Power System Protection and Control, 2013, 41(1): 1-6. [3] 刘轩. 风力发电机故障预警方法研究[D]. 北京: 华北电力大学, 2017. [4] 梁颖, 方瑞明. 基于SCADA和支持向量回归的风电机组状态在线评估方法[J]. 电力系统自动化, 2013, 37(14): 7-12, 31. Liang Ying, Fang Ruiming.An online wind turbine condition assessment method based on SCADA and support vector regression[J]. Automation of Electric Power Systems, 2013, 37(14): 7-12, 31. [5] Bangalore P, Tjernberg L B.An artificial neural network approach for early fault detection of gearbox bearings[J]. IEEE Transactions on Smart Grid, 2015, 6(2): 980-987. [6] Chen Tianqi, Guestrin C.XGBoost: a scalable tree boosting system[C]//KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 785-794. [7] 王桂兰, 赵洪山, 米增强. XGBoost算法在风机主轴承故障预测中的应用[J]. 电力自动化设备, 2019, 39(1): 73-77, 83. Wang Guilan, Zhao Hongshan, Mi Zengqiang.Application of XGBoost algorithm in prediction of wind motor main bearing fault[J]. Electric Power Automation Equipment, 2019, 39(1): 73-77, 83. [8] Chatterjee J, Dethlefs N.Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines[J]. Wind Energy, 2020, 23: 1693-1710. [9] Trizoglou P, Liu Xiaolei, Lin Zi.Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines[J]. Renewable Energy, 2021, 179: 945-962. [10] 赵洪山, 闫西慧, 王桂兰, 等. 应用深度自编码网络和XGBoost的风电机组发电机故障诊断[J]. 电力系统自动化, 2019, 43(1): 81-86. Zhao Hongshan, Yan Xihui, Wang Guilan, et al.Fault diagnosis of wind turbine generator based on deep autoencoder network and XGBoost[J]. Automation of Electric Power Systems, 2019, 43(1): 81-86. [11] Udo W, Muhammad Y.Data-driven predictive maintenance of wind turbine based on SCADA data[J]. IEEE Access, 9: 162370-162388. [12] 马然, 栗文义, 齐咏生. 风电机组健康状态预测中异常数据在线清洗[J]. 电工技术学报, 2021, 36(10): 2127-2139. Ma Ran, Li Wenyi, Qi Yongsheng.Online cleaning of abnormal data for the prediction of wind turbine health condition[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2127-2139. [13] 李航涛, 郭鹏, 杨锡运. 基于离散度分析的风电机组功率曲线绘制方法研究[J]. 太阳能学报, 2019, 40(1): 237-241. Li Hangtao, Guo Peng, Yang Xiyun.Research on wind turbine power curve drawing method based on discrete degree analysis[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 237-241. [14] Zheng Le, Hu Wei, Min Yong.Raw wind data preprocessing: a data-mining approach[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 11-19. [15] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361. Shen Xiaojun, Fu Xuejiao, Zhou Chongcheng, et al.Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361. [16] 陈鹏, 赵小强. 基于GLNPE-SVDD的滚动轴承性能退化评估方法[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 12-16. Chen Peng, Zhao Xiaoqiang.Performance degradation evaluation method of rolling bearing based on GLNPE-SVDD[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1): 12-16. [17] 乔福宇, 马良玉, 马永光. 基于功率曲线分析与神经网络的风电机组故障预警方法[J]. 中国测试, 2020, 46(8): 44-50. Qiao Fuyu, Ma Liangyu, Ma Yongguang.Wind turbine fault early warning method based on power curve analysis and neural network[J]. China Measurement & Test, 2020, 46(8): 44-50. [18] 万恒正. 基于SCADA数据关系的大型直驱式风电机组健康状态识别与预警[D]. 湘潭: 湖南科技大学, 2018. [19] 刘家辰, 苗启广, 曹莹, 等. 基于混合多样性生成与修剪的集成单类分类算法[J]. 电子与信息学报, 2015, 37(2): 386-393. Liu Jiachen, Miao Qiguang, Cao Ying, et al.Ensemble one-class classifiers based on hybrid diversity generation and pruning[J]. Journal of Electronics & Information Technology, 2015, 37(2): 386-393. [20] 张帆, 刘德顺, 戴巨川, 等. 一种基于SCADA参数关系的风电机组运行状态识别方法[J]. 机械工程学报, 2019, 55(4): 1-9. Zhang Fan, Liu Deshun, Dai Juchuan, et al.An operating condition recognition method of wind turbine based on SCADA parameter relations[J]. Journal of Mechanical Engineering, 2019, 55(4): 1-9. |