|
|
Healthy Condition Assessment on MOSFETs Based on External Characteristic Parameters and Adaptive Neuro-Fuzzy Inference System |
Wang Yueyue1, 2, Chen Minyou1, Lai Wei1, Chen Yigao3, Luo Dan1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Grid Chengdu Qingbaijiang Electric Power Supply Branch Chengdu 610300 China; 3. Chongqing Vehicle Test amp Research Institute Co. Ltd Chongqing 401122 China |
|
|
Abstract Solder delamination is one of the main failure modes of power modules. An accurate method to assess its healthy condition is particularly important for improving system reliability. This paper focuses on MOSFET modules, which are widely used in the power electronic system. Under a certain driving voltage condition, a healthy assessment model is proposed based on the on-state resistance, case temperature and current. First, an electrical-thermal coupling model is established to discuss the electrical and thermal characteristics of MOSFET under different delamination degrees of the solder layer. Then, the sensitivities of different characteristic parameters to solder delamination are investigated under different conditions. It indicates that, under the same operating conditions, the increment of the on-state resistance has a higher sensitivity. Finally, the external characteristic parameters are introduced to represent the working condition, such as case temperature, on-state resistance and current. Based on the adaptive neuro-fuzzy inference system (ANFIS), a healthy assessment model is built to predict module aging rate and classify the healthy condition grade interval. This method is easy to monitor data extraction and has high precision, which can provide guidance to rational use of modules, condition-based maintenance and other practical applications.
|
Received: 14 July 2017
Published: 26 September 2018
|
|
|
|
|
[1] Chakraborty A.Advancements in power electronics and drives in interface with growing renewable energy resources[J]. Renewable & Sustainable Energy Reviews, 2011, 15(4): 1816-1827. [2] W 菲奇纳, 刘鹿生. 功率器件、电路和系统用的计算机辅助设计技术的进展[J]. 电气技术, 2006, 7(3): 116-121. W Fitchner, Liu Lusheng. Progress in technology CAD for power devices, circuits and systems[J]. Electrical Engineering, 2006, 7(3): 116-121. [3] 李辉, 刘盛权, 冉立, 等. 大功率并网风电机组变流器状态监测技术综述[J]. 电工技术学报, 2016, 31(8): 1-10. Li Hui, Liu Shengquan, Ran Li, et al.Overview of condition monitoring technologies of power con- verter for high power grid-connected wind turbine generator system[J]. Transactions of China Electro- technical Society, 2016, 31(8): 1-10. [4] 查晓明, 刘悦遐, 黄萌, 等. 功率MOSFET寿命模型综述[J]. 电源学报, 2016, 14(6): 108-121. Zha Xiaoming, Liu Yuexia, Huang Meng, et al.Review of MOSFET lifetime model[J]. Journal of Power Supply, 2016, 14(6): 108-121. [5] 赖伟, 陈民铀, 冉立, 等. 老化试验条件下的IGBT失效机理分析[J]. 中国电机工程学报, 2015, 35(20): 5293-5300. Lai Wei, Chen Minyou, Ran Li, et al.Analysis of IGBT failure mechanism based on ageing experiments[J]. Proceedings of the CSEE, 2015, 35(20): 5293-5300. [6] Yang Shaoyong, Xiang Dawei, Bryant A, et al.Condition monitoring for device reliability in power electronic converters: a review[J]. IEEE Transactions on Power Electronics, 2010, 25(11): 2734-2752. [7] Xiang Dawei, Ran Li, Tavner P J, et al.Monitoring solder fatigue in a power module using case- above-ambient temperature rise[J]. IEEE Transactions on Industry Applications, 2010, 47(6): 2578-2591. [8] 熊小伏, 陈星田, 翁世杰. 支撑大数据分析的发电厂变电站全息录波方法[J]. 电力系统保护与控制, 2015, 43(22): 17-22. Xiong Xiaofu, Chen Xingtian, Weng Shijie.A holographic record method supporting big data analysis for power plant and substation[J]. Power System Protection and Control, 2015, 43(22): 17-22. [9] 何湘宁, 石巍, 李武华, 等. 基于大数据的大容量电力电子系统可靠性研究[J]. 中国电机工程学报, 2017, 37(1): 209-220. He Xiangning, Shi Wei, Li Wuhua, et al.Reliability enhancement of power electronics systems by big data science[J]. Proceedings of the CSEE, 2017, 37(1): 209-220. [10] Gao Bing, Yang Fan, Chen Minyou, et al.A temperature gradient-based potential defects identi- fication method for IGBT module[J]. IEEE Transa- ctions on Power Electronics, 2016, 32(3): 2227-2242. [11] Xiang D, Ran L, Tavner P, et al.Condition monitoring power module solder fatigue using inverter harmonic identification[J]. IEEE Transa- ctions on Power Electronics, 2011, 27(1): 235-247. [12] 彭小圣, 邓迪元, 程时杰, 等. 面向智能电网应用的电力大数据关键技术[J]. 中国电机工程学报, 2015, 35(3): 503-511. Peng Xiaosheng, Deng Diyuan, Cheng Shijie, et al.Key technologies of electric power big data and its application prospects in smart grid[J]. Proceedings of the CSEE, 2015, 35(3): 503-511. [13] 徐盛友. 功率变流器状态监测及可靠性评估方法研究[D]. 重庆: 重庆大学, 2013. [14] Mohagheghi S, Harley R G, Habetler T G, et al.Condition monitoring of power electronic circuits using artificial neural networks[J]. IEEE Transactions on Power Electronics, 2009, 24(10): 2363-2367. [15] http://ixapps.ixys.com/DataSheet/DS100304B(IXFK- FX80N60P3).pdf [16] Riedel G J, Schmidt R, Liu C, et al.Reliability of large are solder joints within IGBT modules: numerical modeling and experimental results[C]//7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, Germany, 2012: 1-6. [17] 郑利兵, 韩立, 刘钧. 基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J]. 电工技术学报, 2011, 26(7): 242-246. Zheng Libing, Han Li, Liu Jun.Investigation of the temperature character of IGBT failure mode based on 3D thermal-electro coupling FEM[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 242-246. [18] 李辉, 胡姚刚, 刘盛权, 等. 计及焊层疲劳影响的风电变流器IGBT模块热分析及改进热网络模型[J]. 电工技术学报, 2017, 32(13): 80-87. Li Hui, Hu Yaogang, Liu Shengquan, et al.Thermal analysis and improved thermal network model of IGBT module for wind power converter considering solder fatigue effects[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 80-87. [19] Lai Wei, Chen Minyou, Ran Li, et al.Low ΔTj stress cycle effects in IGBT power module die-attach lifetime modelling[J]. IEEE Transactions on Power Electronics, 2015, 39(1): 6575-6585. [20] 杨天, 霍琳琳. 一种柔性直流输电系统PID-ANFIS优化控制方法[J]. 电力系统保护与控制, 2015, 43(17): 29-37. Yang Tian, Huo Linlin.A control method of PID- ANFIS controller for VSC-HVDC[J]. Power System Protection and Control, 2015, 43(17): 29-37. [21] 孙丙香, 高科, 姜久春, 等. 基于ANFIS和减法聚类的动力电池放电峰值功率预测[J]. 电工技术学报, 2015, 30(4): 272-280. Sun Bingxiang, Gao Ke, Jiang Jiuchun, et al.Research on discharge peak power prediction of battery based on ANFIS and subtraction clustering[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 272-280. [22] 师元康, 姜振超, 赵书涛. 基于内部温度的继电保护装置时变失效率研究[J]. 电力系统保护与控制, 2016, 44(4): 123-128. Shi Yuankang, Jiang Zhenchao, Zhao Shutao.Research on time-varying failure rate of protection devices based on internal temperature[J]. Power System Protection and Control, 2016, 44(4): 123-128. [23] 赖伟, 陈民铀, 冉立, 等. 老化实验条件下的IGBT寿命预测模型[J]. 电工技术学报, 2016, 31(24): 173-180. Lai Wei, Chen Minyou, Ran Li, et al.IGBT lifetime model based on aging experiment[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 173-180. [24] 汪波, 罗毅飞, 张烁, 等. IGBT极限功耗与热失效机理分析[J]. 电工技术学报, 2016, 31(12): 135-141. Wang Bo, Luo Yifei, Zhang Shuo, et al.Analysis of limiting power dissipation and thermal failure mechanism[J]. Transactions of China Electro- technical Society, 2016, 31(12): 135-141. [25] Huang Hui.Lifetime prediction for power con- verters[D]. Coventry: University of Warwick, 2012. |
|
|
|