|
|
Optimization of Design Method of T-Type Impedance Matching Network for Wireless Charging System Based on Rectified Load Compensation |
Li Shufan1, 2, Wang Lifang1, 3, Guo Yanjie1, 3, Ji Li1, 2, Yue Yuan4 |
1. Key Laboratory of Power Electronics and Electric Drive Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100190 China; 3. Beijing Co-Innovation Center for Electric Vehicles Beijing 100081 China; 4. School of Electrical Engineering & Automation Tianjin University Tianjin 300072 China |
|
|
Abstract The impedance matching of the wireless charging system is of great importance for improving the power transmission capability of the system. To avoid the shortcomings of the existing resistive rectified load analyzing method, an optimization method of T-type impedance matching network for wireless charging system was proposed based on rectified load compensation. Firstly, the T-type impedance matching networks were analyzed based on traditional rectified load analyzing method. Secondly, the non-linear characteristics of the rectified load were analyzed, and a conclusion was obtained accordingly that the inductive characteristics of the rectified load could not be neglected. According to the conclusion above, the method of compensating the rectified load was studied, and the T-type impedance matching network was optimized. Finally, simulations and experiments were conducted to verify the proposed optimization method. The results show that the proposed optimization method can improve the power transfer efficiency of the wireless charging system by nearly 1% and the output power from 2.52kW to 2.77kW.
|
Published: 16 January 2018
|
|
Fund:国家高技术研究发展计划(863计划)(2015AA016202)和国家自然科学基金(51507168)资助项目 |
Corresponding Authors:
王丽芳 女,1971年生,研究员,博士生导师,研究方向为电动汽车无线充电技术、动力电池管理、整车控制技术、智能车与电磁兼容技术等。E-mail: wlf@mail.iee.ac.cn
|
|
|
|
[1] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J]. 电工技术学报, 2010, 25(7): 6-13. Yang Qingxin, Chen Haiyan, Xu Guizhi, et al. Research progress in contactless power transmission technology[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 6-13. [2] 张波, 黄润鸿, 丘东元. 磁谐振中距离无线电能传输及关键科学问题[J]. 电源学报, 2015, 13(4): 1-7. Zhang Bo, Huang Runhong, Qiu Dongyuan. Key problems of midrange wireless power transfer via magnetic resonances[J]. Journal of Power Supply, 2015, 13(4): 1-7. [3] 黄学良, 谭林林, 陈中, 等. 无线电能传输技术研究与应用综述[J]. 电工技术学报, 2013, 28(10): 1-11. Huang Xueliang, Tan Linlin, Chen Zhong, et al. Review and research progress on wireless power transfer technology[J]. Transactions of China Electro- technical Society, 2013, 28(10): 1-11. [4] 朱春波, 于春来, 毛银花, 等. 磁共振无线能量传输系统损耗分析[J]. 电工技术学报, 2012, 27(4): 13-17. Zhu Chunbo, Yu Chunlai, Mao Yinhua, et al. Analysis of the loss of magnetic resonant wireless power transfer[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 13-17. [5] 疏许健, 张波. 感应耦合无线电能传输系统的能量法模型及特性分析[J]. 电力系统自动化, 2017, 41(2): 28-32. Shu Xujian, Zhang Bo. Energy model and characteri- stic analysis for inductively coupled power transfer system[J]. Automation of Electric Power Systems, 2017, 41(2): 28-32. [6] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al. Key technologies and applications of wireless power transmission[J]. Transactions of China Electro- technical Society, 2015, 30(19): 68-84. [7] 郑心城, 陈为. 电动汽车无线充电的磁耦合结构综述[J]. 电气技术, 2017, 18(4): 9-15. Zheng Xincheng, Chen Wei. Overview of magnetic coupling structure in wireless charging for electric vehicle[J]. Electrical Engineering, 2017, 18(4): 9-15. [8] Zhang W, Wong S C, Tse C K, et al. Analysis and comparison of secondary series- and parallel- compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage- transfer ratio[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(6): 2979-2990. [9] 李均锋, 廖承林, 王丽芳. 基于线圈回路复阻抗设计实现无线能量传输系统最大效率研究[J]. 电工技术学报, 2015, 30(6): 99-105. Li Junfeng, Liao Chenglin, Wang Lifang. Research on maximum efficiency of wireless power transfer system based on loop circuit complex impedance design[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 99-105. [10] 苏玉刚, 谢诗云, 呼爱国, 等. LCL复合谐振型电场耦合式无线电能传输系统传输特性分析[J]. 电工技术学报, 2015, 30(19): 55-60. Su Yugang, Xie Shiyun, Hu Aiguo, et al. Trans- mission property analysis of electric-field coupled wireless power transfer system with LCL resonant network[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 55-60. [11] 王智慧, 孙跃, 戴欣, 等. CLC型非接触电能传输系统输出控制[J]. 西南交通大学学报, 2012, 47(1): 26-31. Wang Zhihui, Sun Yue, Dai Xin et al. Output control of CLC type contactless power transfer systems[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 26-31. [12] Pantic Z, Bai S, Lukic S M. ZCS-compensated resonant inverter for inductive-power-transfer appli- cation[J]. IEEE Transactions on Industrial Elec- tronics, 2011, 58(8): 3500-3510. [13] Li S, Li W, Deng J, et al. A double-sided LCC compensation network and its tuning method for wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2261-2273. [14] Feng H, Cai T, Duan S, et al. An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer[J]. IEEE Transactions on Industrial Elec- tronics, 2016, 63(10): 6591-6601. [15] Zhou S, Mi C C. Multi-paralleled LCC reactive power compensation networks and their tuning method for electric vehicle dynamic wireless charging[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6546-6556. [16] 高键鑫, 吴旭升, 高嵬, 等. 基于LCC的磁谐振无线电能传输发射端补偿技术[J]. 电工技术学报, 2016, 31(增刊1): 9-15. Gao Jianxin, Wu Xusheng, Gao Wei, et al. Compen- sation technology of magnetic resonant wireless power transfer transmitter based on LCC[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 9-15. [17] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40. Zhao Zhengming, Liu Fang, Chen Kainan. New progress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 30-40. [18] Zhu Q, Wang L, Guo Y, et al. Applying LCC compensation network to dynamic wireless EV charging system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6557-6567. [19] Wang Z H, Xiao L, Sun Y, et al. A simple approach for load identification in current-fed inductive power transfer system[C]//Proceedings of IEEE International Conference on the Power System Technology, Auckland, New Zealand, 2012, doi:10.1109/Power Con. 2012.6401305. [20] 侯佳, 陈乾宏, 严开沁, 等. 新型S/SP补偿的非接触谐振变换器分析与控制[J]. 中国电机工程学报, 2013, 33(33): 1-9. Hou Jia, Chen Qianhong, Yan Kaiqin, et al. Analysis and control of S/SP compensation contactless resonant converters[J]. Proceedings of the CSEE, 2013, 33(33): 1-9. [21] 刘闯, 郭赢, 葛树坤, 等. 基于双LCL谐振补偿的电动汽车无线充电系统特性分析与实验验证[J]. 电工技术学报, 2015, 30(15): 127-135. Liu Chuang, Guo Ying, Ge Shukun, et al. Characteristics analysis and experimental verification of the double LCL resonant compensation network for electrical vehicles wireless power transfer[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 127-135. [22] Chow J P W, Chung H S H, Cheng C S. Online regulation of receiver-side power and estimation of mutual inductance in wireless inductive link based on transmitter-side electrical information[C]//proceedings of the 2016 IEEE Applied Power Electronics Con- ference and Exposition (APEC), Long Beach, CA, 2016: 1795-1801. [23] 李均锋. 电动汽车非接触充电系统电路参数设计及负载估计技术研究[D]. 北京: 中国科学院, 2015. [24] 朱庆伟. 线圈阵列供电的电动汽车行车无线充电技术研究[D]. 北京: 中国科学院, 2016. [25] 李均锋, 廖承林, 王丽芳, 等. 基于LCCL的电动汽车无线充电系统最大效率与传输功率解耦设计研究[J]. 电工技术学报, 2015, 30(增刊1): 199-203. Li Junfeng, Liao Chenglin, Wang Lifang, et al. Decoupling method of maximum efficiency and transferring power for electric vehicle wireless charging system via LCCL circuit[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 199-203. |
|
|
|