|
|
Voltage Curve Optimally Developing of 220kV Power Plant Based on Voltage Difference between Generation and Grid |
Chen Zexing1, Ye Linhao1, Zhang Yongjun1, Lin Xiaolang2, Ma Weizhe2 |
1. Key Laboratory of Clean Energy Technology of Guangdong Province South China University of Technology Guangzhou 510640 China; 2. Shenzhen Power Supply Bureau Co. Ltd Shenzhen 518000 China |
|
|
Abstract Voltage control of power plants is the basis for safe and economic operation of power grid. On the purpose of minimizing the active power loss in power grid, the optimal allocation of reactive load between a 220kV power plant and power system is analyzed. This article shows the affecting factors of the optimal reactive power of power plant. It also put forward the evaluation index which reflects the matching between the voltage control of power plant and the voltage-regulate demand of power system, namely, the voltage difference between generation and grid (VDGG). And then, by controlling the values of variables that affect the VDGG, the article adopts an optimal mathematical model to obtain the optimal VDGG under different operation modes of power grid. After differently and uniformly dealing with the optimal VDGG, the daily voltage curve of power plant is optimally developed combined with the predictive voltage of the hinge bus. The effectiveness of the method is verified by case study, which achieves simple and practical effects of reactive power optimization.
|
Received: 23 October 2015
Published: 19 July 2017
|
|
|
|
|
[1] Wu H, Yu C W, Xu N, et al. Analysis of reactive power support of generators using power flow tracing methods[J]. Electric Power Components and Systems, 2007, 35(9): 1079-1092. [2] Rui J G C D S, Souza A C Z D, Leme R C, et al. Decentralized secondary voltage control using voltage drop compensator among power plants[J]. International Journal of Electrical Power and Energy Systems, 2013, 47(1): 61-68. [3] 广东电网公司. Q/CSG-GPG212001—2011 广东电力系统调度规程[S]. 2006. [4] 张忠翼. 自动电压调控技术在电厂中的应用研究[D]. 北京: 华北电力大学, 2009. [5] 陈磊, 闵勇. 发电机无功极限诱导分岔的机理分析及预防策略[J]. 中国电机工程学报, 2008, 28(10): 14-19. Chen Lei, Min Yong. Mechanism analysis and preventive measures investigation of generator reactive power limit induced bifurcation[J]. Pro- ceedings of the CSEE, 2008, 28(10): 14-19. [6] 郑超, 汤涌, 马世英, 等. 网源稳态调压对暂态无功支撑能力的影响研究[J]. 中国电机工程学报, 2014, 34(1): 115-122. Zheng Chao, Tang Yong, Ma Shiying, et al. Study on the influence of steady-state voltage regulation schemes on transient reactive power supporting[J]. Proceedings of the CSEE, 2014, 34(1): 115-122. [7] Nie Yonghui, Du Zhengchun, Wang Zhongjie, et al. PCPDIPM based optimal reactive power flow model with discrete variables[J]. International Journal of Electrical Power and Energy Systems, 2015, 69: 116- 122. [8] 刘前进, 许慧铭, 施超. 基于人工蜂群算法的多目标最优潮流问题的研究[J]. 电力系统保护与控制, 2015, 43(8): 1-7. Liu Qianjin, Xu Huiming, Shi Chao. Research on power flow optimization based on multi-objective artificial bee colony algorithm[J]. Power System Protection and Control, 2015, 43(8): 1-7. [9] 李俊, 邓大上, 房鑫炎. 考虑电压稳定裕度约束的点估计随机最优无功调度方法[J].电工技术学报, 2015, 30(7): 27-33. Li Jun, Deng Dashang, Fang Xinyan. Stochatic optimal reactive power dispatch method based on point estimation considering voltage stability margins[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 27-33. [10] 刘文学, 梁军, 贠志皓, 等. 基于可信理论的多目标模糊机会约束无功优化[J]. 电工技术学报, 2015, 30(21): 82-89. Liu Wenxue, Liang Jun, Yun Zhihao, et al. Multi- objective fuzzy chance constrained optimal reactive power flow based on credibility theory[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(21): 82-89. [11] 周攀, 范旭娟, 肖潇, 等. 基于改进算子的免疫遗传算法的电压无功优化[J]. 电力系统保护与控制, 2014, 42(20): 110-115. Zhou Pan, Fan Xujuan, Xiao Xiao, et al. Voltage and reactive power optimization based on immune genetic algorithm of improved operator[J]. Power System Protection and Control, 2014, 42(20): 110-115. [12] Corsi S, Pozzi M, Sabelli C, et al. The coordinated automatic voltage control of the Italian transmission grid, part I: reasons of the choice and overview of the consolidated hierarchical system[J]. IEEE Transa- ctions on Power Systems, 2004, 19(4): 1723-1732. [13] Xia Y, Chan K W, Liu M. Direct nonlinear primal- dual interior point method for transient stability constrained optimal power flow[J]. IEE Proceedings- Generation Transmission and Distribution, 2005(1): 11-16. [14] 郭庆来, 孙宏斌, 张伯明, 等. 自动电压控制中连续变量与离散变量的协调方法(一): 变电站内协调电压控制[J]. 电力系统自动化, 2008, 32(8): 39-42, 107. Guo Qinglai, Sun Hongbin, Zhang Boming, et al. Coordination of continuous variables and discrete variables in automatic voltage control (part one): coordinated voltage control for substations[J]. Auto- mation of Electric Power Systems, 2008, 32(8): 39-42, 107. [15] 郭庆来, 孙宏斌, 张伯明, 等. 自动电压控制中连续变量与离散变量的协调方法(二): 厂站协调控制[J]. 电力系统自动化, 2008, 32(9): 65-68, 78. Guo Qinglai, Sun Hongbin, Zhang Boming, et al. Coordination of continuous variables and discrete variables in automatic voltage control (part two): coordinated voltage control among power plants and substations[J]. Automation of Electric Power Systems, 2008, 32(9): 65-68, 78. [16] 冷永杰, 张路寅, 赵建峰, 等. 基于多线程遗传算法的目标分级地区电网电压无功优化控制[J]. 电力系统保护与控制, 2015, 43(18): 37-41. Leng Yongjie, Zhang Luyin, Zhao Jianfeng, et al. Target classification reactive power optimal control of regional power grid based on multi-thread genetic algorithm[J]. Power System Protection and Control, 2015, 43(18): 37-41. [17] 刁浩然, 杨明, 陈芳, 等. 基于强化学习理论的地区电网无功电压优化控制方法[J]. 电工技术学报, 2015, 30(12): 408-414. Diao Haoran, Yang Ming, Chen Fang, et al. Reactive power and voltage optimization control approach of the regional power grid based on reinforcement learning theory[J]. Transactions of China Electro- technical Society, 2015, 30(12): 408-414. [18] 陈柏超, 宋继明, 周攀, 等. 基于MCR和MSVC的220kV变电站多电压等级无功电压综合控制[J]. 电工技术学报, 2015, 30(16): 230-237. Chen Baichao, Song Jiming, Zhou Pan, et al. MCR and MSVC based voltage and reactive power com- bination control of different voltage level in 220kV substation[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 230-237. |
|
|
|