|
|
A Microgrid Cluster Structure and Its Autonomous Coordination Control Strategy |
Zhou Xiaoping, Chen Yandong, Zhou Leming, Luo An, Wu Wenhua |
National Electric Power Conversion and Control Engineering Technology Research Center Hunan University Changsha 410082 China |
|
|
Abstract As an interconnected system of multiple AC sub-grid and DC sub-grid, microgrid cluster’s complex structure increases its difficulty in power coordination control. To address this issue, this paper proposes a microgrid cluster structure and its autonomous coordination control strategy. The proposed structure is composed of AC sub-grid, DC sub-grid, power exchange unit (PEU) and energy pool (EP). PEU is mainly used to coordinate power exchange among sub-grids and EP, which can realize energy mutual-aid among each sub-grid and maintain the stability of the bus voltage in each sub-grid. Besides, EP is used to stabilize the DC bus voltage of EP, and to reasonably allocate the exchange power that PEU needs. Meanwhile, this paper also proposes the power coordinated control method based on adaptive power exchange coefficient for PEU and the hierarchical coordinated control method for EP, respectively. With the application of the proposed control strategy, the autonomous coordinated control for the microgrid cluster can be realized. Simulation and experimental results have verified the proposed microgrid cluster structure and its autonomous coordination control strategy.
|
Received: 31 October 2016
Published: 26 May 2017
|
|
|
|
|
[1] 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12. Wang Chengshan, Wu Zhen, Li Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12. [2] 余贻鑫, 栾文鹏. 智能电网述评[J]. 中国电机工程学报, 2009, 34(29): 1-6. Yu Yixin, Luan Wenpeng. Smart grid and it simple mentations[J]. Proceedings of the CSEE, 2009, 34(29): 1-6. [3] Carrasco J M, Franquelo L G, Bialasiewicz J, et al. Power electronic systems for the grid integration of renewable energy sources: a survey[J]. IEEE Transa- ctions on Industrial Electronics, 2006, 53(4): 1002- 1016. [4] 刘宏达, 周磊. 多功能并网逆变器及其在接入配电系统的微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2649-2658. Liu Hongda, Zhou Lei. A multi-functional grid connected inverter and its application in micro-grid access to distribution system[J]. Proceedings of the CSEE, 2014, 34(16): 2649-2658. [5] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10. Li Jianlin, Ma Huimeng, Hui Dong. Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10. [6] Kai S, Ehsan A, Duc N H. DC microgrid for wind and solar power integration[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2 (1): 115-126. [7] 吕志鹏, 罗安, 蒋雯倩, 等. 多逆变器环境微网环流控制新方法[J]. 电工技术学报, 2012, 27(1): 40-47. Lü Zhipeng, Luo An, Jiang Wenqian, et al. New circulation control method for micro-grid with multi-inverter micro-sources[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 40-47. [8] 吴翔宇, 沈沉, 赵敏, 等. 基于公共母线电压的微电网孤网运行下垂控制策略[J]. 电工技术学报, 2015, 30(24): 135-141. Wu Xiangyu, Shen Chen, Zhao Min, et al. A droop control method based on PCC bus voltage in islanded microgrid[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 135-141. [9] Amir K, Hossein M. A decentralized control method for a low-voltage DC microgrid[J]. IEEE Transa- ctions on Energy Conversion, 2014, 29(4): 793-801. [10] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning. Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [11] 高春凤. 微网群自助与协调控制关键技术研究[D]. 北京: 中国农业大学, 2014. [12] Zheng Guping, Li Nanfang. Multi-agent based control system for multimicrogrids[C]//International Conference on Computational Intelligence and Software Engineering (CISE), 2010, doi:10.1109/ CISE.2010.5676818. [13] Jin Chi, Loh P C, Wang Peng. Autonomous operation of hybrid AC-DC microgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2214-2223. [14] Che Liang, Mohammad S, Ahmed A, et al. Hierarchical coordination of a community microgrid with AC and DC microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 3042-3051. [15] Jin Chi, Loh P C, Wang Peng. Autonomous operation of hybrid AC-DC microgrids[C]∥IEEE International Conference on Sustainable Energy Technologies, Kandy, Sri Lanka, 2010, doi:10.1109/ICSET.2010. 5684456. [16] Poh C L, Li Ding, Yi K C, et al. Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1374-1382. [17] Navid E, Ebrahim F. Power control and management in a hybrid AC/DC microgrid[J]. IEEE Transactions on Smart Grid, 2014, 5(3): 1494-1505. [18] Wang Peng, Jin Chi, Zhu Dexuan, et al. Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 1279-1290. [19] 陈燕东, 罗安, 谢三军, 等. 一种无延时的单相光伏并网功率控制方法[J]. 中国电机工程学报, 2012, 32(25): 118-226. Chen Yandong, Luo An, Xie Sanjun, et al. A single-phase photovoltaic grid-connected power control method without delay[J]. Proceedings of the CSEE, 2012, 32(25): 118-226. [20] 霍群海, 李宁宁. 微源逆变器双环控制策略[J]. 电工技术学报, 2013, 28(2): 278-284. Huo Qunhai, Li Ningning. A two-loop control strategy of micro-source inverter[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 278-284. |
|
|
|