|
|
Review on Dynamic Stability Research of Microgrid |
Zhao Zhuoli1,2, Yang Ping1,2, Zheng Chengli3, Xu Zhirong1, Wang Yuewu2 |
1. School of Electric Power South China University of Technology Guangzhou 510641 China; 2. Guangdong Key Laboratory of Clean Energy Technology South China University of Technology Guangzhou 511458 China; 3. National-Local Joint Engineering Laboratory for Wind Power Control and Integration Technology South China University of Technology Guangzhou 511458 China |
|
|
Abstract Power-electronic-converter (PEC) based distributed generations (DGs) are widespread in microgrids. This kind of DGs differs significantly from the conventional synchronous generators in control schemes and dynamic characteristics. The diversity of DG control methods and the increasing penetration of PEC DGs are leading to various challenges in stable operation of low-inertia microgrids. Moreover, the coexistence of heterogeneous microsources and loads within the microgrid may result in interactions among the DGs and loads. The couplings among the devices with different characteristics reshape the dynamic responses of the microgrids and induce stability issues. In this paper, firstly, typical operating characteristics and stability issues of the microgrids with increasing penetrations of renewable energy resources are summarized in detail. Based on the classification of the microgrid dynamic stability issues, state of the art in microgrid stability studies is reviewed and discussed comprehensively from the viewpoints of dynamic stability issues and methods of stability analysis. Finally, the trends for microgrid stability research are also presented.
|
Received: 30 September 2016
Published: 26 May 2017
|
|
|
|
|
[1] Lasseter R H. Smart distribution: coupled micro- grids[J]. Proceedings of the IEEE, 2011, 99(6): 1074- 1082. [2] Hatziargyriou N, Asano H, Iravani R, et al. Micro- grids[J]. IEEE Power and Energy Magazine, 2007, 5(4): 78-94. [3] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(17): 4552-4564. Li Xialin, Guo Li, Wang Chengshan, et al. Virtual impedance optimization method for microgrid reactive power sharing control[J]. Proceedings of the CSEE, 2016, 36(17): 4552-4564. [4] Lopes J A P, Moreira C L, Madureira A G. Defining control strategies for microgrids islanded operation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 916-924. [5] 王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14, 23. Wang Chengshan, Li Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2): 10-14, 23. [6] 冯伟, 孙凯, 关雅娟, 等. 孤立微电网中基于输出电压复合控制的电压源型并网逆变器谐波电流抑制策略[J]. 电工技术学报, 2016, 31(7): 72-80. Feng Wei, Sun Kai, Guan Yajuan, et al. A harmonic current suppression strategy for voltage source grid-connected inverters based on output voltage hybrid control in islanded microgrids[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 72-80. [7] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57-70. Yang Xinfa, Su Jian, Lü Zhipeng, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70. [8] Guerrero J M, Vasquez J C, Matas J, et al. Hierarchical control of droop-controlled AC and DC microgrids: a general approach toward standardi- zation[J]. IEEE Transactions on Industrial Elec- tronics, 2011, 58(1): 158-172. [9] Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1387-1401. [10] Majumder R. Some aspects of stability in micro- grids[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3243-3252. [11] Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1821-1831. [12] 王丹. 分布式发电系统建模及稳定性仿真[D]. 天津: 天津大学, 2009. [13] Katiraei F, Iravani R, Hatziargyriou N, et al. Micro- grids management[J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65. [14] 李武华, 徐驰, 禹红斌, 等. 直流微网系统中混合储能分频协调控制策略[J]. 电工技术学报, 2016, 31(14): 84-92. Li Wuhua, Xu Chi, Yu Hongbin, et al. Frequency dividing coordinated control strategy for hybrid energy storage system of DC micro-grid[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(14): 84-92. [15] 曾正, 李辉, 冉立. 交流微电网逆变器控制策略述评[J]. 电力系统自动化, 2016, 40(9): 142-151. Zeng Zheng, Li Hui, Ran Li. Comparison on control strategies of inverters in AC microgrids[J]. Auto- mation of Electric Power Systems, 2016, 40(9): 142-151. [16] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154. Yuan Xiaoming, Cheng Shijie, Hu Jiabing. Multi- time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154. [17] 王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12. Wang Chengshan, Wu Zhen, Li Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12. [18] Rocabert J, Luna A, Blaabjerg F, et al. Control of power converters in AC microgrids[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(11): 4734- 4749. [19] Olivares D E, Mehrizi-Sani A, Etemadi A H, et al. Trends in microgrid control[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1905-1919. [20] 曾正, 邵伟华, 宋春伟, 等. 电压源逆变器典型控制方法的电路本质分析[J]. 中国电机工程学报, 2016, 36(18): 4980-4989. Zeng Zheng, Shao Weihua, Song Chunwei, et al. Circuit-based analysis of typical control schemes of voltage-source inverter[J]. Proceedings of the CSEE, 2016, 36(18): 4980-4989. [21] Guerrero J M, Chandorkar M, Lee T L, et al. Advanced control architectures for intelligent micro- grids, part I: decentralized and hierarchical control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1254-1262. [22] Pogaku N, Prodanovic M, Green T C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on power electronics, 2007, 22(2): 613-625. [23] Majumder R, Chaudhuri B, Ghosh A, et al. Impro- vement of stability and load sharing in an auto- nomous microgrid using supplementary droop control loop[J]. IEEE Transactions on Power Systems, 2010, 25(2): 796-808. [24] Barklund E, Pogaku N, Prodanovic M, et al. Energy management in autonomous microgrid using stability-constrained droop control of inverters[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2346-2352. [25] Katiraei F, Iravani M R, Lehn P W. Small-signal dynamic model of a micro-grid including con- ventional and electronically interfaced distributed resources[J]. IET Generation, Transmission & Distri- bution, 2007, 1(3): 369-378. [26] Tang Xisheng, Deng Wei, Qi Zhiping. Investigation of the dynamic stability of microgrid[J]. IEEE Transactions on Power Systems, 2014, 29(2): 698- 706. [27] Zhao Zhuoli, Yang Ping, Guerrero J M, et al. Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated micro- grid[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5974-5991. [28] 陆晓楠, 孙凯, 黄立培. 微电网系统中基于双二阶滤波器的主动阻尼方法[J]. 电工技术学报, 2013, 28(3): 261-268. Lu Xiaonan, Sun Kai, Huang Lipei. Active damping method based on bi-quad filter for microgrid applications[J]. Transactions of China Electro- technical Society, 2013, 28(3): 261-268. [29] He Jinwei, Li Yunwei, Bosnjak D, et al. Investigation and active damping of multiple resonances in a parallel-inverter-based microgrid[J]. IEEE Transa- ctions on Power Electronics, 2013, 28(1): 234-246. [30] 李霞林, 郭力, 王成山. 微网主从控制模式下的稳定性分析[J]. 电工技术学报, 2014, 29(2): 24-34. Li Xialin, Guo Li, Wang Chengshan. Stability analysis in a master-slave control based microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 24-34. [31] Radwan A A A, Mohamed Y A R I. Stabilization of medium-frequency modes in isolated microgrids supplying direct online induction motor loads[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 358- 370. [32] Cespedes M, Xing Lei, Sun Jian. Constant-power load system stabilization by passive damping[J]. IEEE Transactions on Power Electronics, 2011, 26(7): 1832-1836. [33] Bottrell N, Prodanovic M, Green T C. Dynamic stability of a microgrid with an active load[J]. IEEE Transactions on Power Electronics, 2013, 28(11): 5107-5119. [34] Taylor C W. Power system voltage stability[M]. New York: McGraw-Hill, 1994. [35] Kahrobaeian A, Mohamed Y A R I. Analysis and mitigation of low-frequency instabilities in auto- nomous medium-voltage converter-based microgrids with dynamic loads[J]. IEEE Transactions on Indu- strial Electronics, 2014, 61(4): 1643-1658. [36] Mishra S, Ramasubramanian D. Improving the small signal stability of a PV-DE-dynamic load-based microgrid using an auxiliary signal in the PV control loop[J]. IEEE Transactions on Power Systems, 2015, 30(1): 166-176. [37] Liu Shichao, Wang Xiaoyu, Liu P X. Impact of communication delays on secondary frequency control in an islanded microgrid[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2021-2031. [38] Ahumada C, Cárdenas R, Saez D, et al. Secondary control strategies for frequency restoration in islanded microgrids with consideration of communi- cation delays[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1430-1441. [39] 李鹏, 于晓蒙, 赵波. 基于混合灵敏度的交直流混合微网交直流断面电压 H ∞ 鲁棒控制[J]. 中国电机工程学报, 2016, 36(1): 68-75. Li Peng, Yu Xiaomeng, Zhao Bo. H ∞ robust voltage control of AC-DC interface based on mixed sensi- tivity in AC-DC hybrid micogrid[J]. Proceedings of the CSEE, 2016, 36(1): 68-75. [40] Liu Xiong, Wang Peng, Loh P C. A hybrid AC/DC microgrid and its coordination control[J]. IEEE Transactions on Smart Grid, 2011, 2(2): 278-286. [41] Radwan A A A, Mohamed Y A R I. Assessment and mitigation of interaction dynamics in hybrid AC/DC distribution generation systems[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1382-1393. [42] 吕天光, 艾芊, 孙树敏, 等. 含多微网的主动配电系统综合优化运行行为分析与建模[J]. 中国电机工程学报, 2016, 36(1):122-132. Lü Tianguang, Ai Qian, Sun Shuming, et al. Behavioural analysis and optimal operation of active distribution system with multi-microgrids[J]. Pro- ceedings of the CSEE, 2016, 36(1): 122-132. [43] Kundur P. Power system stability and control[M]. New York: McGraw-hill, 1994. [44] Zhang Yun, Xie Le. Online dynamic security assessment of microgrid interconnections in smart distribution systems[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3246-3254. [45] Uudrill J M. Dynamic stability calculations for an arbitrary number of interconnected synchronous machines[J]. IEEE Transactions on Power Apparatus and Systems, 1968(3): 835-844. [46] 倪以信, 陈寿孙, 张宝林. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [47] Papadopoulos P N, Papadopoulos T A, Crolla P, et al. Measurement-based analysis of the dynamic perfor- mance of microgrids using system identification techniques[J]. IET Generation, Transmission & Distribution, 2015, 9(1): 90-103. [48] Messina A R, Vittal V. Nonlinear, non-stationary analysis of interarea oscillations via Hilbert spectral analysis[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1234-1241. [49] 王宇静, 于继来. 电力系统振荡模态的矩阵束辨识法[J]. 中国电机工程学报, 2007, 27(19): 12-17. Wang Yujing, Yu Jilai. Matrix pencil method of oscillation modes identification in power systems[J]. Proceedings of the CSEE, 2007, 27(19): 12-17. [50] Belkhayat M. Stability criteria for AC power systems with regulated loads[D]. West Lafayette, USA: Purdue University, 1997. [51] MacFarlane A G J. Complex variable methods for linear multivariable feedback systems[M]. London: Taylor and Francis, 1980. [52] Turner R, Walton S, Duke R. A case study on the application of the Nyquist stability criterion as applied to interconnected loads and sources on grids[J]. IEEE Transactions on Industrial Electronics, 2013, 60(7): 2740-2749. [53] 侯李祥, 卓放, 师洪涛, 等. 基于系统稳定性分析的微电网阻抗测量技术[J]. 电工技术学报, 2015, 30(22): 153-162. Hou Lixiang, Zhuo Fang, Shi Hongtao, et al. New techniques for measuring impedance characteristics of an islanded microgrid based on stability analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 153-162. [54] Dragičević T, Lu X, Vasquez J C, et al. DC micro- grids, part I: a review of control strategies and stabilization techniques[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4876-4891. [55] Rasheduzzaman M, Mueller J A, Kimball J W. Reduced-order small-signal model of microgrid systems[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1292-1305. [56] 王阳, 鲁宗相, 闵勇, 等. 基于降阶模型的多电源微电网小干扰分析[J]. 电工技术学报, 2012, 27(1): 1-8. Wang Yang, Lu Zongxiang, Min Yong, et al. Small signal analysis of microgrid with multiple micro sources based on reduced order model in islanded operation[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 1-8. [57] Iyer S V, Belur M N, Chandorkar M C. A generalized computational method to determine stability of a multi-inverter microgrid[J]. IEEE Transactions on Power Electronics, 2010, 25(9): 2420-2432. [58] Guo Xiaoqiang, Lu Zhigang, Wang Baocheng, et al. Dynamic phasors-based modeling and stability analysis of droop-controlled inverters for microgrid applications[J]. IEEE Transactions on Smart Grid, 2014, 5(6): 2980-2987. [59] Miao Zhixin, Piyasinghe L, Khazaei J, et al. Dynamic phasor-based modeling of unbalanced radial distri- bution systems[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3102-3109. [60] 石荣亮, 张兴, 刘芳, 等. 虚拟同步发电机及其在多能互补微电网中的运行控制策略[J]. 电工技术学报, 2016, 31(20): 170-180. Shi Rongliang, Zhang Xing, Liu Fang, et al. Control technologies of multi-energy complementary micro- grid operation based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 170-180. [61] 吴恒, 阮新波, 杨东升, 等. 虚拟同步发电机功率环的建模与参数设计[J]. 中国电机工程学报, 2015, 35(24): 6508-6518. Wu Heng, Ruan Xinbo, Yang Dongsheng, et al. Modeling of the power loop and parameter design of virtual synchronous generators[J]. Proceedings of the CSEE, 2015, 35(24): 6508-6518. [62] Zhong Qingchang, Weiss G. Synchronverters: inver- ters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267. |
|
|
|