|
|
The Development of Solid-State Nanosecond Pulsed Plasma Jet Apparatus Based on Marx Structure |
Dong Shoulong1, Yao Chenguo1, Yang Nan1, 2, Zhao Yajun1, Wang Changjin1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China;; 2. Nanjing Operation and Maintenance Division Maintenance Branch of State Grid Jiangsu Electric Power Company Nanjing 210008 China |
|
|
Abstract A nanosecond-pulse power generator apparatus is developed, which consists of a nanosecond pulse generator with chopping switch based on Marx circuit and a needle-ring structure electrode. The pulse generator is composed of DC power, control circuit and main circuit. The main circuit has 10 stages. Two MOSFETs are used as the main switch and chopping switch respectively in each stage. The control circuit can generate trigger pulse signals to drive MOSFET work by fiber-optic isolation. The generator can produce repetitive pulses. Herein, the range of output voltage is 0~8kV, pulse width is 100~1 000ns, pulse repetition frequency is 1Hz~1kHz, rise time is less than 30ns and fall time is less than 50ns. In the plasma jets, needle-ring electrode structure is adopted, and the working gas is argon device. Plasma jets experiment platform is also developed, which can sustain stable atmospheric pressure plasma jets.
|
Received: 25 May 2016
Published: 03 January 2017
|
|
|
|
|
[1] Brandenlourg R, Navrátil Z, Jánský J, et al. The transition between different modes of barrier discharges at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2009, 42(8): 85208- 85217. [2] Massines F, Gherardi N, Naudé N, et al. Glow and Townsend dielectric barrier discharge in various atmosphere[J]. Plasma Physics & Controlled Fusion, 2005, 47(12B): 577-588. [3] 王新新. 介质阻挡放电及其应用[J]. 高电压技术, 2009, 35(1): 1-11. Wang Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 35(1): 1-11. [4] Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine[J]. Plasma Processes & Polymers, 2008, 5(6): 503-533. [5] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6): 1416-1425. Lu Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425. [6] Laroussi M. Low temperature plasma-based steri- lization: overview and state-of-the-art[J]. Plasma Processes & Polymers, 2005, 2(5): 391-400. [7] Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11(11): 1-35. [8] Katja F, Hartmut S, Thomas V W, et al. High rate etching of polymers by means of an atmospheric pressure plasma jet[J]. Plasma Processes & Polymers, 2011, 8(1): 51-58. [9] Lowke J J. Plasma predictions: past, present and future[J]. Plasma Sources Science & Technology, 2013, 22(2): 23002-23015. [10] Nowling G R, Babayan S E, Jankovic V, et al. Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure[J]. Plasma Sources Science & Technology, 2002, 11(1): 97-103. [11] 章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5): 31-37. Zhang Cheng, Shao Tao, Yu Yang, et al. Charac- teristics of unipolar nanosecond pulse DBD and its application on surface treatment of polyimer films[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 31-37. [12] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al. Effect of atmospheric-pressure microsecond pulsed discharge on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [13] 陈桂涛, 刘春强, 孙强, 等. 基于前馈控制的等离子体电源恒流控制策略[J]. 电工技术学报, 2014, 29(8): 187-195. Chen Guitao, Liu Chunqiang, Sun Qiang, et al. A current control strategy based on feedforward for plasma[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 187-195. [14] Chang C, Sun J, Xiong Z F, et al. A compact two-way high-power microwave combiner[J]. Review of Scientific Instruments, 2014, 85(8): 84704. [15] Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports, 2014, 540(3): 123-166. [16] Zhang C, Shao T, Wang R, et al. A repetitive microsecond pulse generator for atmospheric pressure plasma jets[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(4): 1907-1915. [17] Li W, Shao T, Zhang C, et al. A repetitive microsecond- pulse generator for plasma application[C]//Power Modulator and High Voltage Conference, 2012: 465-468. [18] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [19] Walsh J L, Liu D X, Iza F, et al. Fast track communication: contrasting characteristics of sub-microsecond pulsed atmospheric air and atom- spheric pressure helium-oxygen glow discharges[J]. Journal of Physics D: Applied Physics, 2010, 43(3): 32001-32007. [20] Walsh J L, Kong M G. 10ns pulsed atmospheric air plasma for uniform treatment of polymeric sur- faces[J]. Applied Physics Letters, 2007, 91(25): 251504. [21] Xiong Q, Lu X, Ostrikov K, et al. Length control of He atmospheric plasma jet plumes: effects of discharge parameters and ambient air[J]. Physics of Plasmas, 2009, 16(4): 43505. [22] Akman M A, Laroussi M, Karakas E. The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements[J]. Plasma Sources Science & Technology, 2012, 21(3): 34016-34025. [23] Iza F, Walsh J L, Kong M G. From submicrosecond- to nanosecond-pulsed atmospheric-pressure plasmas[J]. IEEE Transactions on Plasma Science, 2008, 37(7): 1289-1296. [24] Wu Y, Liu K, Qiu J, et al. Repetitive and high voltage Marx generator using solid-state devices[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2007, 14(4): 937-940. [25] Jiang W, Diao W, Wang X. Marx generator using power mosfets[C]// IEEE Pulsed Power Conference, PPC'09, Washington D. C, USA, 2009: 408-410. [26] Rao J, Liu K, Qiu J. All solid-state nanosecond pulsed generators based on Marx and magnetic switches[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2013, 20(4): 1123-1128. [27] 姚陈果, 章锡明, 李成祥, 等. 基于现场可编程门阵列的全固态高压ns脉冲发生器[J]. 高电压技术, 2012, 38(40: 929-934. Yao Chenguo, Zhang Ximing, Li Chengxiang, et al. All solid-state high-voltage nanosecond pulse generator based on FPGA[J]. High Voltage Engin- eering, 2012, 38(4): 929-934. [28] 熊兰, 马龙, 胡国辉, 等. 具有负载普适性的高压双极性方波脉冲源研制[J]. 电工技术学报, 2015, 30(12): 51-60. Xiong Lan, Ma Long, Hu Guohui, et al. A newly high-voltage square bipolar pulse generator for various loads[J]. Transactions of China Electro- technical Society, 2015, 30(12): 51-60. [29] Jiang W. Solid-state LTD module using power MOSFETs[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2730-2733. [30] 布卢姆. 脉冲功率系统的原理与应用[M]. 北京: 清华大学出版社, 2008. [31] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50. Liang Mei, Zheng Qionglin, Ke Chong, et al. Performance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(12): 41-50. [32] 杨广羽, 马玉新, 傅亚光, 等. 光电耦合MOS栅固态继电器回路研究与误触发改进措施[J]. 电力系统保护与控制, 2016, 44(15): 135-141. Yang Guangyu, Ma Yuxin, Fu Yaguang, et al. Research of photoelectric MOS gate solid state relay circuit and spurious triggering improvement[J]. Power System Protection and Control, 2016, 44(15): 135-141. [33] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学: 物理学力学天文学, 2011, 41(7): 801-815. Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENTIA SINICA: Phys, Mech & Astron, 2011, 41(7): 801-815. |
|
|
|