|
|
Experimental Research on the Discharge and Induced Flow Characteristics of a New Dielectric Barrier Discharge Plasma Actuator |
Wu Yangyang, Jia Min, Wang Weilong, Zhang Yunwei, Li Yinghong |
Science and Technology on Plasma Dynamics Laboratory Air Force Engineering University Xi’an 710038 China |
|
|
Abstract Improving the stability of compressor with plasma flow control required higher induced flow velocity produced by plasma actuator. This paper carried out related experiments to study the electrical and induced flow characteristics by new dielectric barrier discharge (DBD) plasma actuator. Moreover, the effects of the different discharge voltage amplitudes and duty cycles on the induced flow velocity of the new DBD actuator were analyzed. Compared with the characteristics of the traditional DBD actuator, the possibility for improving the stability of compressor was also discussed. The results show that, the traditional DBD actuator has one strong and one weak discharges in one discharge cycle, but the new DBD actuator has two strong discharges. When the discharge frequency is 15kHz, the induced flow velocity of the new DBD actuator is smaller than that of the traditional DBD actuator under low voltage, while it is bigger under high voltage. The maximum induced flow velocity of the new DBD actuator can increase to 4.7m/s, so the flow of compressor can be better controlled. Both induced flows produced by two actuators are turbulent flow. The turbulence of induced flow rises with the increase of voltage, and the turbulence of new DBD actuator is stronger at high voltage. Therefore it can promote the mixing between the main flow and boundary layer. With the fixed discharge voltage amplitude and frequency, the induced flow velocities of the two types of DBD actuator ascend linearly with the increase of cycle duty.
|
Received: 24 June 2016
Published: 03 January 2017
|
|
|
|
|
[1] Roth J R, Dai X, Rahel J, et al. The physics and phenomenology of paraelectric one atmosphere uniform glow discharge plasma (OAUGDPTM) actuators for aerodynamic flow control: AIAA 2005-0781[R]. Reno, USA: AIAA, 2005. [2] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [3] 方志, 钱晨, 姚正秋. 大气压环环电极结构射流放电模型建立及仿真[J]. 电工技术学报, 2016, 31(4): 271-282. Fang Zhi, Qian Chen, Yao Zhengqiu. The model and simulation studies for ring-ring electrode structure jet discharge at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 271-282. [4] 章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5): 31-37. Zhang Cheng, Shao Tao, Yu Yang, et al. Characteri- stics of unipolar nanosecond pulse DBD and its application on surface treatment of polyimer films[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 31-37. [5] 韩孟虎, 李军, 梁华, 等. 不同布局等离子体激励器的纳秒脉冲放电特性与流动控制效果[J]. 高电压技术, 2015, 41(6): 2060-2065. Han Menghu, Li Jun, Liang Hua, et al. Discharge characteristics and flow control effect of nanose- cond pulsed plasma actuators configurations[J]. High Voltage Engineering, 2015, 41(6): 2060-2065. [6] Saddoughi S, Bennett G, Boespflug M, et al. Experi- mental investigation of tip clearance flow in a transonic compressor with and without plasma actuators[J]. Journal of Turbomachinery, 2014, 137(4): 041008(1-10). [7] Patel M P, Ng T T, Vasudevan S, et al. Numerical design and analysis of a multi-DBD actuator con- figuration for the experimental testing of ACHEON nozzle model[J]. Aerospace Science and Technology, 2015, 41: 259-273. [8] 田学敏, 田希晖, 车学科, 等. 高频交流激励表面介质阻挡放电特性及其应用[J]. 高电压技术, 2014, 40(10): 3119-3124. Tian Xuemin, Tian Xihui, Che Xueke, et al. Chara- cteristics and applications of high-frequency AC surface dielectric barrier discharge[J]. High Voltage Engin- eering, 2014, 40(10): 3119-3124. [9] Takayuki Matsunuma, Takehiko Segawa. Active tip clearance flow control for an axial-flow turbine rotor using ring-type plasma actuators[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Confer- ence and Exposition, 10.1115/GT2014-26390, 2014. [10] 车学科, 聂万胜, 侯志勇, 等. 地面试验模拟高空等离子体流动控制效果[J]. 航空学报, 2015, 36(2): 441-448. Che Xueke, Nie Wansheng, Hou Zhiyong, et al. High altitude plasma flow control simulation through ground experiment[J]. Acta Aeronautica ET Astron- autica Sinica, 2015, 36(2): 441-448. [11] Starikovskiy A, Aleksandrov N. Plasma-assisted ignition and combustion[J]. Process in Energy and Combustion Sciece, 2013, 39(1): 61-110. [12] Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Pro- gress in Aerospace Sciences, 2013, 62(4): 52-78. [13] 吴云, 李应红. 等离子体流动控制研究进展与发展展望[J]. 航空学报, 2015, 36(2): 381-405. Wu Yun, Li Yinghong. Progress and outlook of plasma flow control[J]. Acta Aeronautica ET Astron- autica Sinica, 2015, 36(2): 381-405. [14] 宋慧敏, 张明莲, 贾敏, 等. 对称布局等离子体气动激励器的放电特性与加速效应[J]. 高电压技术, 2011, 37(6): 1465-1470. Song Huimin, Zhang Minglian, Jia Min, et al. Discharge characteristics and acceleration effect of symmetric plasma aerodynamic actuators[J]. High Voltage Engineering, 2011, 37(6): 1465-1470. [15] 潘波, 沈锦明, 林麒. 等离子体激励器流场测量及诱导推力实验[J]. 推进技术, 2011, 32(1): 146- 150. Pan Bo, Shen Jinming, Lin Qi. Experiment on flow field and thrust induced by plasma actuators[J]. Journal of Propulsion Technology, 2011, 32(1): 146- 150. [16] 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589. Shi Zhiwei, Fan Bengen. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica ET Astronautica Sinica, 2011, 32(9): 1583-1589. [17] Hao Jiangnan, Tian Balin, Wang Yulin, et al. Dielectric barrier plasma dynamics for active aerody- namic flow control[J]. Science China E: Techno- logical Sciences, 2014, 57(2): 345-353. [18] Erfani R, Erfani T, Utyuzhnikov S V, et al. Optimi- sation of multiple encapsulated electrode plasma actuator[J]. Aerospace Science and Technology, 2013, 26(1): 120-127. [19] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experi- ments in Fluids, 2007, 43(6): 917-928. [20] Murphy J P, Kriegseis J, Lavoie P. Scaling of maximum velocity, body force, and power con- sumption of dielectric barrier discharge plasma actuators via particle image velocimetry[J]. Journal of Applied Physics, 2013, 113(24): 243301(1-10). |
|
|
|